Abstract:
Provided are lithium batteries comprising (a) a separator/electrode assembly of a current collector layer interposed between two electrode layers of one polarity bonded to a porous separator layer on each electrode surface, wherein each electrode layer is coated directly on a separator layer, (b) an electrode of the opposite polarity with a current collector layer interposed between two electrode layers of the opposite polarity, and (c) an electrolyte, where the batteries comprise alternating layers of the separator/electrode assembly and the electrode of the opposite polarity. Preferably, a portion of the assembly is not in contact with the electrode of the opposite polarity and a portion of the electrode of opposite polarity is not in contact with the assembly, and an electrically conductive device independently connects the portions of each polarity for effective current collection. Also provided are methods of preparing such lithium batteries.
Abstract:
The present invention pertains to organic reflective layers comprising an organic radical cation compound, wherein the layer reflects in the infrared region. Preferably, the organic radical cation compound is a salt of an aminium radical cation. Also provided are marking systems comprising such reflective layers and methods of marking an article utilizing such reflective layers.
Abstract:
Provided are infrared reflective films comprising a substrate and at least one infrared reflective layer comprising an aminium radical cation compound in a crystalline state and an organic polymer, wherein the infrared reflective layer has a reflectance peak in the infrared region from 1250 nm to 1700 nm. Such infrared films are stable in their optical properties against degradation by light and moisture. Also provided are solar control window films, security markings, and other optical articles comprising such infrared reflective films. Further provided are methods for making such infrared reflective films.
Abstract:
Provided are infrared films comprising a substrate, a layer of an aminium radical cation compound in a crystalline state and an organic polymer selected from the group consisting of a divinyl ether polymer, a fluoropolymer, and a silicone polymer, and, optionally, a water repellent layer overlying the layer of the aminium compound. Such infrared films are stable in their optical properties and useful for security markings, test strips for analysis of fluids, and other optical articles for detection in the infrared. Also provided are methods for making such infrared films.
Abstract:
The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110° C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.
Abstract:
Provided are methods of preparing a separator for an electrochemical cell comprising the steps of (a) coating onto a substrate a liquid mixture comprising an inorganic oxide, an organic polymer, a divinyl ether of an ethylene glycol, and/or an organic carbonate; (b) drying the coating; and (c) delaminating the coating from the substrate to form the separator comprising an inorganic oxide and the organic polymer, wherein the inorganic oxide of step (c) comprises a reaction product of the divinyl ether and/or the organic carbonate with the inorganic oxide of step (a). Preferably, the inorganic oxide of step (c) comprises a hydrated aluminum oxide of the formula Al2O3.H2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises a reaction product of the divinyl ether and/or organic carbonate with the inorganic oxide of step (a), such as pseudo-boehmite.
Abstract translation:提供制备用于电化学电池的隔膜的方法,包括以下步骤:(a)将包含无机氧化物,有机聚合物,乙二醇的二乙烯基醚和/或有机碳酸酯的液体混合物涂覆在基材上; (b)干燥涂层; 和(c)从基材分层涂层以形成包含无机氧化物和有机聚合物的分离体,其中步骤(c)的无机氧化物包含二乙烯基醚和/或有机碳酸酯与无机氧化物的反应产物 的步骤(a)。 优选地,步骤(c)的无机氧化物包含式Al 2 O 3 H 2 H 2 O的水合氧化铝,其中x 小于1.0,并且其中水合氧化铝包括二乙烯基醚和/或有机碳酸酯与步骤(a)的无机氧化物的反应产物,例如假勃姆石。
Abstract:
Provided is a laser imageable media that forms both a vesicular bubble image and an infrared image upon exposure to laser radiation. The laser imageable media comprises (1) a substrate, preferably a transparent plastic substrate, (2) an infrared absorbing layer comprising an infrared absorbing compound, preferably an aminium radical cation compound, that exhibits a reduction in infrared absorption when exposed to the laser radiation, and (3) a polymeric layer comprising an organic polymer, preferably nitrocellulose, overlying the infrared absorbing layer. The vesicular image on a transparent plastic substrate is readable with a visible scanner without the use of any reflective background material behind the transparent plastic substrate.
Abstract:
Provided are infrared films comprising a substrate, a layer of an aminium radical cation compound in a crystalline state and an organic polymer selected from the group consisting of a divinyl ether polymer, a fluoropolymer, and a silicone polymer, and, optionally, a water repellent layer overlying the layer of the aminium compound. Such infrared films are stable in their optical properties and useful for security markings, test strips for analysis of fluids, and other optical articles for detection in the infrared. Also provided are methods for making such infrared films.
Abstract:
Provided is a separator/cathode assembly for use in an electric current producing cell, wherein the assembly comprises a cathode current collector layer interposed between a first cathode layer and a second cathode layer and a porous separator layer on the side of the first cathode layer opposite to the cathode current collector layer, wherein the first cathode layer is coated directly on the separator layer. Also provided are methods of preparing such separator/cathode assemblies.
Abstract:
Provided are infrared reflective films comprising a substrate and at least one infrared reflective layer comprising an aminium radical cation compound in a crystalline state and an organic polymer, wherein the infrared reflective layer has a reflectance peak in the infrared region from 1250 nm to 1700 nm. Such infrared films are stable in their optical properties against degradation by light and moisture. Also provided are solar control window films, security markings, and other optical articles comprising such infrared reflective films. Further provided are methods for making such infrared reflective films.