Abstract:
A method, system, apparatus, and program for translating one computer language to another using doubly-rooted tree data structures. A doubly-rooted tree (7, 19) is the combination of two sets of hierarchically related objects sharing a common set of leaves. An N-rooted tree is also described. When a doubly-rooted tree is constructed in the specified manner and then translated to a second doubly-rooted tree, source language code is transformed into target language code. In addition, the translation preserves preprocessor characteristics of the source language code including macros, conditionally compiled regions of code, source inclusion statements, and comments.
Abstract:
A method, system, apparatus, and program for translating one computer language to another using doubly-rooted tree data structures. A doubly-rooted tree (7, 19) is the combination of two sets of hierarchically related objects sharing a common set of leaves. An N-rooted tree is also described. When a doubly-rooted tree is constructed in the specified manner and then translated to a second doubly-rooted tree, source language code is transformed into target language code. In addition, the translation preserves preprocessor characteristics of the source language code including macros, conditionally compiled regions of code, source inclusion statements, and comments.
Abstract:
A method and apparatus for translating source code written in one computer language to source code written in another language wherein translated static fragments are generated in the face of textual inconsistencies. Exactly one target language definition of each source language static fragment is generated and the differences are encapsulated in new parameters.
Abstract:
A method, system, apparatus, and program for translating one computer language to another using doubly-rooted tree data structures. A doubly-rooted tree (7, 19) is the combination of two sets of hierarchically related objects sharing a common set of leaves. An N-rooted tree is also described. When a doubly-rooted tree is constructed in the specified manner and then translated to a second doubly-rooted tree, source language code is transformed into target language code. In addition, the translation preserves preprocessor characteristics of the source language code including macros, conditionally compiled regions of code, source inclusion statements, and comments.