Abstract:
A non-mechanical valve (3) for controlling the flow of fluidisable solids is disclosed. The valve (3) comprises a pipe having an upstream leg (5) with a solids inlet (13) at an upper end, a downstream leg (7) with a solids outlet (14) at an upper end, and a base section (9) interconnecting lower ends of the legs (5, 7). The valve (3) further comprises a means for introducing aeration gas into each of the legs (5, 7) to maintain fluidised flow of solids through the valve (3) and a means for adjusting the flow of aeration gas to the legs (5, 7) to control the solids flow through the valve (3).
Abstract:
A non-mechanical valve (3) for controlling the flow of fluidisable solids is disclosed. The valve (3) comprises a pipe having an upstream leg (5) with a solids inlet (13) at an upper end, a downstream leg (7) with a solids outlet (14) at an upper end, and a base section (9) interconnecting lower ends of the legs (5, 7). The valve (3) further comprises a means for introducing aeration gas into each of the legs (5, 7) to maintain fluidised flow of solids through the valve (3) and a means for adjusting the flow of aeration gas to the legs (5, 7) to control the solids flow through the valve (3).
Abstract:
An injection lance (26) for injecting hot gas into a vessel includes an elongate gas flow duct (31) which receives hot gas from a gas inlet structure (32) and an elongate central tubular structure (33) which extends within gas flow duct (31) from its rear end to its forward end. Adjacent the forward end of duct (31), central structure (33) carries a series of flow directing vanes (34) for imparting swirl to the hot gas flow exiting the duct. The wall of duct (31) downstream from gas inlet (32) is internally water cooled by flow of water through annular passages (43,44). The cooling water also flows through the interior of a duct tip (36) at the forward end of duct (31). The front end of central structure (33) which carries the swirl vanes (34) is internally water cooled by cooling water supplied forwardly through a central water flow passage (52) from a water inlet (53) at the rear of the lance through to a nose (35) of the central structure. The cooling water returns back through the central structure via an annular water return passage (54) to a water outlet (55) at the rear end of the lance.
Abstract:
A lance for injecting a pre-heated oxygen-containing gas into a vessel containing a bath of molten material is disclosed. The lance (26) includes an elongate gas flow duct (31) from which to discharge gas from the duct. The duct includes (i) inner and outer concentric carbon steel tubes (37, 39) which provide major structural support for the duct, (ii) cooling water supply and return passage means (43, 44) extending through the duct wall from the rear end to the forward end of the duct for supply and return of cooling water to the forward end of the duct, and (iii) a mechanical means in the form of lands (136) on the exterior surface of the duct adapted to hold a layer of frozen slag on the duct. The lance also includes a gas inlet (32) for introducing hot gas into the rear end of the duct. The lance also includes a tip means (36) joined to the concentric tubes at the forward end of the duct. The lance also includes a protective lining formed from a refractory or other material that is capable of protecting the duct from exposure to gas flow at 800-1400 DEG C through the duct. The lining is a non-metallic material with heat insulating properties when compared to the steel tubes. The lance also includes a swirl means (34) located in the duct for imparting swirl to gas flow through the forward end of the duct.
Abstract:
A gas injection lance and an apparatus employing the lance for producing ferrous metal are provided. The lance has an elongated flow duct made of inner and outer concentric carbon steel tubes, a cooling water supply and return, and exterior surface which is designed to hold a frozen layer of slag on the duct, a gas inlet at a rear end of the duct, a tip joining the concentric tubes at the forward end of the duct, a non-metallic or refractory lining for the duct, and swirl-imparting member or members located in the duct for imparting swirl in the gas flow through the forward end of the duct.
Abstract:
A gas injection lance and an apparatus employing the lance for producing ferrous metal are provided. The lance has an elongated flow duct made of inner and outer concentric carbon steel tubes, a cooling water supply and return, and exterior surface which is designed to hold a frozen layer of slag on the duct, a gas inlet at a rear end of the duct, a tip joining the concentric tubes at the forward end of the duct, a non-metallic or refractory lining for the duct, and swirl-imparting member or members located in the duct for imparting swirl in the gas flow through the forward end of the duct.