Abstract:
A cable comprising a covering having two or more different sheath layers, with the covering providing superior chemical and weathering resistance, and excellent surface feel. In a preferred embodiment, the outermost sheath layer of the covering is a thermoplastic elastomer essentially free of a flame retardant material, yet the covering achieves desirable flame retardant performance due to the presence of an inner sheath layer comprising a thermoplastic elastomer and a flame retardant, preferably halogen- free flame retardant. The outermost sheath layer also exhibits sought-after surface qualities. Methods for producing the coverings and flame retardant cables are disclosed.
Abstract:
Compositions especially suitable for forming fibers and films having good elasticity and relatively high modulus are disclosed. Surprisingly, compositions including a styrenic block copolymer having a relatively high melt flow rate, and a detackifier, and optionally, but preferably in some embodiments a polyolefin (co)polymer, and/or polystyrene polymer, and/or a softener have good draw down performance and are processable into fibers having low tack,relatively high modulus and tensile strength. The fibers produced from the composition can be processed easily and are useful to manufacture articles such as fabrics, both woven and non-woven, webs, threads, and yarns. In various embodiments, unique fiber structures are produced having low tack and desirable elasticity.
Abstract:
Thermoplastic elastomer compositions, in particular derived from one or more styrenic block copolymers, a relatively high molecular weight isobutylene-containing (co)polymer, and a biorenewable processing aid. The isobutylene-containing (co)polymer imparts desirable oxygen barrier performance to the composition and the biorenewable processing aid acts as a barrier synergist as well as a processing aid useful during compounding. Low oxygen permeability sealing elements can be formed from the compositions. Processes for preparing the compositions and sealing elements are disclosed.
Abstract:
Thermoplastic elastomer compositions, in particular derived from one or more styrenic block copolymers, a relatively high molecular weight isobutylene-containing (co)polymer, and a biorenewable processing aid. The isobutylene-containing (co)polymer imparts desirable oxygen barrier performance to the composition and the biorenewable processing aid acts as a barrier synergist as well as a processing aid useful during compounding. Low oxygen permeability sealing elements can be formed from the compositions. Processes for preparing the compositions and sealing elements are disclosed.
Abstract:
Compositions especially suitable for forming fibers and films having good elasticity and relatively high modulus are disclosed. Surprisingly, compositions including a styrenic block copolymer having a relatively high melt flow rate, and a detackifier, and optionally, but preferably in some embodiments a polyolefin (co)polymer, and/or polystyrene polymer, and/or a softener have good draw down performance and are processable into fibers having low tack, relatively high modulus and tensile strength. The fibers produced from the composition can be processed easily and are useful to manufacture articles such as fabrics, both woven and non-woven, webs, threads, and yarns. In various embodiments, unique fiber structures are produced having low tack and desirable elasticity.