Abstract:
This patent describes on-press ink and/or fountain solution development of lithographic plates having on a substrate a thermosensitive layer capable of hardening or solubilization upon exposure to an infrared laser radiation. The plate can be imagewise exposed with an infrared laser and then on-press developed with ink and/or fountain solution by rotating the plate cylinder and engaging ink and/or fountain solution roller. The developed plate can then directly print images to the receiving sheets. The imagewise exposure can be performed off the press or with the plate being mounted on the plate cylinder of a lithographic press.
Abstract:
A variable data lithographic printing device comprises surrounding a printing cylinder a photosensitive layer coater, an exposure source, optionally a developer, an inking applicator, optionally a transfer system, and optionally an eraser. During printing operation, each surface areas of the rotating cylinder continuously undergo the cycle of coating, imagewise exposure, optionally developing, inking, printing of inked imaging to the receiving medium, and optionally erasing processes. The developing means can be omitted if an ink and/or fountain solution developable photosensitive layer is used. In an alternative design, the cylinder is replaced with a continuous supply of a ribbon with lithographic substrate surface. In another alternative design, the cylinder and the coater are replaced with a continuous supply of a pre-sensitized ribbon comprising on a substrate a photosensitive layer.
Abstract:
A method of deactivating and on-press developing an exposed lithographic printing plate is disclosed. The plate comprises on a substrate a photosensitive layer developable with ink and/or fountain solution and capable of hardening upon exposure to a radiation. The plate is exposed with the radiation, deactivated, and then on-press developed with ink and/or fountain solution. The deactivation of the exposed plate allows the handling of the plate under regular office light or any other light without causing the hardening of the non-exposed areas of the photosensitive layer.