Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A cascode common source and common gate LNAs operating at 60GHz are introduced and described. The cascode common source LNA is simulated to arrive at an optimum ratio of upper device width to the lower device width. The voltage output of the cascode common source LNA is translated into a current to feed and apply energy to the mixer stage. These input current signals apply the energy associated with the current directly into the switched capacitors in the mixer to minimize the overall power dissipation of the system. The LNA is capacitively coupled to the mixer switches in the I and Q mixers and are enabled and disabled by the clocks generated by the quadrature oscillator. These signals are then amplified by a differential amplifier to generate the sum and difference frequency spectra.
Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
Abstract:
Injection locked dividers provide a divided clock signal after being driven by a injected clock signal that is a multiple of the divided clock signal. At injected clock signal at 60 GHz generates a differential 30 GHz clock signal. One innovative construction of the injection locked oscillator reduces the internal capacitive at a node by associating the parasitic capacitance at this node with the inductors of the tapped inductor resonant circuit. This provides more energy flow in the injection pulses applied to the legs of the injection locked circuit providing an increase locking range.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
Very high frequency circuits suffer from parasitic resistances. At 60 GHz, conventional layout techniques can introduce loss into the circuit at critical locations. One critical interconnect between the output of a pre-driver and the gate of the final output stage causes 1 or 2 dB of loss due to the layout. By minimizing the number of via contacts, this conventional loss can be recovered using this new layout technique. In addition, a tap point of a via stack is used to modify the resonant characteristics of the interconnect. Finally, cross coupled devices in a resonant circuit are used to reduce the common mode noise at the expense of the common mode gain.
Abstract:
A phase lock loop (PLL) is an important component in wireless systems. CMOS technology offers voltage controlled oscillator designs operating at 60 GHz. One of the difficulties is dividing the high frequency clock down to a manageable clock frequency using conventional CMOS. Although injection locked dividers can divide down this clock frequency, these dividers have limitations. A divide by 2 is presented that uses several techniques; feed forward, clock amplification and series peaked inductors to overcome these limitations.
Abstract:
A Sallen-Key filter requires an operational amplifier with a large input impedance and a small output impedance. The operational amplifier requires an internal feedback path for stability that limits performance. This invention eliminates the need for internal feedback and increases the gain of a source follower which has characteristics matching the operational amplifier in the Sallen-Key filter. The source follower provides 6dB of AC voltage gain and is substituted for the operational amplifier. The Sallen-Key filter requires a differential configuration to generate all the required signals with their compliments and uses these signals in a feed forward path. Furthermore, a two n-channel stacked device maximizes the headroom voltage to several hundred millivolts for a 1.2V voltage supply in a 40nm CMOS technology. Thus, the required 880MHz bandwidth of the Sallen-Key filter can be easily met using the innovative source follower.
Abstract:
This invention eliminates the need for "capacitor coupling" or "transformer coupling," and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (~60GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be "directly coupled" to a next stage using a metallic trace. The "direct coupling" technique passes both the high frequency signal and the biasing voltage to the next stage. The "direct coupling" approach overcomes the large die area usage when compared to either the "AC coupling" or "transformer coupling" approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.