Abstract:
This invention eliminates the need for "capacitor coupling" or "transformer coupling," and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (~60GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be "directly coupled" to a next stage using a metallic trace. The "direct coupling" technique passes both the high frequency signal and the biasing voltage to the next stage. The "direct coupling" approach overcomes the large die area usage when compared to either the "AC coupling" or "transformer coupling" approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
Abstract:
Ein Phasenregelkreis (PLL) ist eine wichtige Komponente in drahtlosen Systemen. Die CMOS-Technologie bietet spannungsgesteuerte Oszillatordesigns, die bei 60 GHz arbeiten. Eine der Schwierigkeiten ist die Teilung des Hochfrequenztakts auf eine handhabbare Taktfrequenz unter Verwendung eines herkömmlichen CMOS. Obwohl Injection-Locked-Teiler diese Taktfrequenz teilen können, haben diese Teiler Einschränkungen. Es wird ein Zweiteiler präsentiert, der zur Überwindung dieser Einschränkungen mehrere Techniken verwendet; Vorsteuerung, Taktverstärkung und Reihen-Entzerrspulen.
Abstract:
Abstract A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
Die vorliegende Erfindung beseitigt die Notwendigkeit einer ”Kondensatorkopplung” oder ”Transformatorkopplung” und die entsprechende unerwünschte parasitäre Kapazität und Induktivität, die mit diesen Kopplungstechniken bei der Gestaltung von Hochfrequenzschaltungen (~60 GHz) verbunden sind. Bei dieser Frequenz muss der Abstand zwischen zwei benachbarten Stufen minimiert werden. Eine Resonanzschaltung in Serie mit der Stromzufuhr- oder Masseleitung wird verwendet, um ein Vorspannsignal von einem Hochfrequenzsignal zu isolieren. Die Einführung dieser Resonanzschaltung ermöglicht ein ”direktes Koppeln” einer ersten Stufe an eine nächste Stufe mit einer metallischen Leiterbahn. Bei der Technik der ”direkten Kopplung” wird sowohl das Hochfrequenzsignal als auch die Vorspannung an die nächste Stufe übergeben. Im Vergleich zum Ansatz der ”Wechselstromkopplung” oder ”Transformatorkopplung” überwindet der Ansatz der ”direkten Kopplung” das Problem des Verbrauchs großer Chipflächen, da zum Übertragen der Hochfrequenzsignale zwischen den Stufen weder Kondensatoren noch Transformatoren erforderlich sind.
Abstract:
A phase lock loop (PLL) is an important component in wireless systems. CMOS technology offers voltage controlled oscillator designs operating at 60 GHz. One of the difficulties is dividing the high frequency clock down to a manageable clock frequency using conventional CMOS. Although injection locked dividers can divide down this clock frequency, these dividers have limitations. A divide by 2 is presented that uses several techniques; feed forward, clock amplification and series peaked inductors to overcome these limitations.
Abstract:
Very high frequency circuits suffer from parasitic resistances. At 60 GHz, conventional layout techniques can introduce loss into the circuit at critical locations. One critical interconnect between the output of a pre-driver and the gate of the final output stage causes 1 or 2 dB of loss due to the layout. By minimizing the number of via contacts, this conventional loss can be recovered using this new layout technique. In addition, a tap point of a via stack is used to modify the resonant characteristics of the interconnect. Finally, cross coupled devices in a resonant circuit are used to reduce the common mode noise at the expense of the common mode gain.
Abstract:
A phase lock loop (PLL) is an important component in wireless systems. CMOS technology offers voltage controlled oscillator designs operating at 60 GHz. One of the difficulties is dividing the high frequency clock down to a manageable clock frequency using conventional CMOS. Although injection locked dividers can divide down this clock frequency, these dividers have limitations. A divide by 2 is presented that uses several techniques; feed forward, clock amplification and series peaked inductors to overcome these limitations.