Abstract:
A method, comprising: receiving an analog input; determining an upper outer rail and a lower outer rail as polling values to be used by voltage comparators; blanking at least three comparators; determining which two of the at least three comparators are closest to the input analog voltage levels; defining the two comparators which are closest to the analog input signal to be the next comparators of the next sampling process; assigning a remaining comparator at a voltage level in between the new top and bottom voltage levels; enabling the outer rails, but blanking the inner rail; progressively narrowing down the voltage range spanned by the two outer comparators; and generating a 2-tuple value of an asynchronous voltage comparator crossing.
Abstract:
A method, comprising: receiving a plurality of 2-tuples of asynchronously sampled inputs at an asynchronous to synchronous reconstructor; performing a coarse asynchronous to synchronous conversion using the plurality of 2-tuples to generate a plurality of low precision synchronous outputs; generating a high precision synchronous output, z0, using a plurality of asynchronous 2-tuples, low precision synchronous outputs after it, and its own high precision outputs from previous steps; calculating c0 and c−1 by summing future low precision outputs and the past high precision outputs after they are weighted with the appropriate windowed sinc. values and then subtracted from appropriate asynchronous samples; calculating, the four quantities “s−11”, “s01”, “s00” and “s−10” based on particular values of the windowed sinc. function; and using c0, c−1, s−11, s01, s00 and s−10, the high precision synchronous output of interest, z0 is generated.
Abstract:
A method, comprising: receiving a plurality of 2-tuples of asynchronously sampled inputs at an asynchronous to synchronous reconstructor; performing a coarse asynchronous to synchronous conversion using the plurality of 2-tuples to generate a plurality of low precision synchronous outputs; generating a high precision synchronous output, z0, using a plurality of asynchronous 2-tuples, low precision synchronous outputs after it, and its own high precision outputs from previous steps; calculating c0 and c−1 by summing future low precision outputs and the past high precision outputs after they are weighted with the appropriate windowed sinc. values and then subtracted from appropriate asynchronous samples; calculating, the four quantities “s−11”, “s01”, “s00” and “s−10” based on particular values of the windowed sinc. function; and using c0, c−1, s−11, s01, s00 and s−10, the high precision synchronous output of interest, z0 is generated.
Abstract:
A method, comprising: receiving an analog input; determining an upper outer rail and a lower outer rail as polling values to be used by voltage comparators; blanking at least three comparators; determining which two of the at least three comparators are closest to the input analog voltage levels; defining the two comparators which are closest to the analog input signal to be the next comparators of the next sampling process; assigning a remaining comparator at a voltage level in between the new top and bottom voltage levels; enabling the outer rails, but blanking the inner rail; progressively narrowing down the voltage range spanned by the two outer comparators; and generating a 2-tuple value of an asynchronous voltage comparator crossing.
Abstract:
Methods and apparatus for magnetic sensors and integrated calibration. In an example arrangement, a system includes a magnetic sensor configured to output a signal corresponding to magnetic fields; a calibration trace disposed proximal to the magnetic sensor; a controlled current source coupled to the calibration trace and configured to output a current resulting in a magnetic field output from the calibration trace; and a comparator coupled to the output signal from the magnetic sensor and to an expected signal. In the example arrangement, the comparator outputs a signal indicating whether the output signal from the magnetic sensor corresponds to the expected signal. Methods are also disclosed.
Abstract:
A bandwidth estimator circuit for an analog to digital converter. The bandwidth estimator computes a bandwidth estimate of an analog signal and includes: an amplitude averaging block configured to determine an average change in amplitude of N samples, a delta time block configured to determine a minimum time difference; a peak voltage block configured to determine the maximum magnitude; a peak to root mean square block configured to determine a ratio of a peak voltage to the root mean square of the magnitude; a bandwidth estimator block configured to compute a product of a ratio of the average change in amplitude to the minimum time difference, multiplied by a ratio of the peak voltage to the root mean square, squared, to the peak voltage multiplied by a constant; and a parameter adjustment circuit configured to modify sampler parameters controlling an analog signal sampling rate. Methods are described.
Abstract:
In described examples, a method for detecting voice activity includes: receiving a first input signal containing noise; sampling the first input signal to form noise samples; determining a first value corresponding to the noise samples; subsequently receiving a second input signal; sampling the second input signal to form second signal samples; determining a second value corresponding to the second signal samples; forming a ratio of the second value to the first value; comparing the ratio to a predetermined threshold value; and responsive to the comparing, indicating whether voice activity is detected in the second input signal.
Abstract:
In described examples, a method for detecting voice activity includes: receiving a first input signal containing noise; sampling the first input signal to form noise samples; determining a first value corresponding to the noise samples; subsequently receiving a second input signal; sampling the second input signal to form second signal samples; determining a second value corresponding to the second signal samples; forming a ratio of the second value to the first value; comparing the ratio to a predetermined threshold value; and responsive to the comparing, indicating whether voice activity is detected in the second input signal.
Abstract:
In described examples, a method for detecting voice activity includes: receiving a first input signal containing noise; sampling the first input signal to form noise samples; determining a first value corresponding to the noise samples; subsequently receiving a second input signal; sampling the second input signal to form second signal samples; determining a second value corresponding to the second signal samples; forming a ratio of the second value to the first value; comparing the ratio to a predetermined threshold value; and responsive to the comparing, indicating whether voice activity is detected in the second input signal.
Abstract:
Methods and apparatus for magnetic sensors and integrated calibration. In an example arrangement, a system includes a magnetic sensor configured to output a signal corresponding to magnetic fields; a calibration trace disposed proximal to the magnetic sensor; a controlled current source coupled to the calibration trace and configured to output a current resulting in a magnetic field output from the calibration trace; and a comparator coupled to the output signal from the magnetic sensor and to an expected signal. In the example arrangement, the comparator outputs a signal indicating whether the output signal from the magnetic sensor corresponds to the expected signal. Methods are also disclosed.