Abstract:
A method for dithering radar frames includes determining at least one of a chirp period Tc for radar chirps in a radar frame and a chirp slope S for radar chirps in the radar frame. In response to determining the chirp period Tc, a maximum chirp dither Δc(max) is determined, and for the radar frame N, a random chirp dither Δc(N) between negative Δc(max) and positive Δc(max) is determined. In response to determining the chirp slope S, a maximum slope dither Ψ(max) is determined, and for the radar frame N, a random slope dither Ψ(N) between negative Ψ(max) and positive Ψ(max) is determined. A radar sensor circuit generates radar chirps in the radar frame N based on the at least one of (1) the chirp period Tc and the random chirp dither Δc(N) and (2) the chirp slope S and the random slope dither Ψ(N).
Abstract:
A radar data processing device includes at least one analog-to-digital converter (ADC) configured to digitize a plurality of input signals, wherein each input signal includes radar chirp and radar chirp reflection information received at one of a plurality of receiver antennas. The radar data processing device also includes Fast Fourier Transform (FFT) logic configured to generate FFT output samples based on each digitized input signal, wherein at least some of the generated FFT output samples are across antenna FFT output samples associated with at least two of the plurality of receiver antennas. The radar data processing device also includes a processor configured to determine a plurality of object parameters based on at least some of the generated FFT output samples, wherein the processor uses a neural network classifier trained to provide a confidence metric for at least one of the plurality of object parameters.
Abstract:
A non-transitory computer-readable storage device stores machine instructions. When executed by one or more processors, the machine instructions cause the one or more processors to determine a first inter-chirp time with respect to a first series of chirps; and determine a second inter-chirp time with respect to a second series of chirps, in which the second inter-chirp time is different than the first inter-chirp time and is based on the first inter-chirp time and a chirp dither value. In another implementation, an oscillator receives chirp configuration signals, which contain the inter-chirp times, and generate the first and second series of chirps with the first and second inter-chirp times, respectively. Transmitter circuitry, coupled to the oscillator, transmits each of the first and second series of chirps with the respective inter-chirp time.
Abstract:
In an example, a method is implemented in a radar system. The method may include transmitting, via transmission channels, a frame of chirps, the chirps transmitted having a programmed frequency offset that is a function of a transmission channel of the transmission channels that is transmitting the frame of chirps, receiving, via a receive channel, a frame of reflected chirps, the reflected chirps comprising the chirps reflected by an object within a field of view of the radar system, and determining a Doppler domain representation of the frame of reflected chirps having a Doppler domain spectrum that includes multiple spectrum bands, the object represented in at least a portion of the spectrum bands based on the reflected chirps, wherein the programmed frequency is configured to cause the Doppler domain spectrum to include a number of spectrum bands greater than the number of transmission channels.
Abstract:
A disclosed method includes computing, for each of a plurality of values of at least one type of error parameter, a distance traveled for each of a plurality of directions of travel. The method includes selecting, from the plurality of values of the at least one type of error parameter, a value that provides a greatest distance traveled for any of the plurality of directions of travel relative to the unselected ones of the plurality of values. The method further includes applying the selected value of the at least one type of error parameter to gyroscopic sensor data, and then determining navigation information based on the gyroscopic sensor data with the selected value of the at least one type of error parameter applied.
Abstract:
A method for navigating using a speed sensor and a yaw rate sensor includes computing, for each of a plurality of error parameter values, a distance traveled for each of a plurality of directions of travel. The method also includes selecting the error parameter value that maximizes the distance traveled in one or more of the directions of travel, applying the selected error parameter value to data from the yaw rate sensor, and navigating using dead reckoning based on data from the speed sensor and data from the yaw rate sensor with the applied error parameter value.
Abstract:
A radar system includes a set of transmitters and a processor coupled to the set of transmitters, which includes first, second, third and fourth transmitters. In operation, the processor generates a first chirp of a set of chirps, in which outputs of the first and second transmitters are modulated by a first phase and outputs of the third and fourth transmitters are modulated by a second phase; and generate a second chirp of the set of chirps, in which outputs of the first and fourth transmitters are modulated by the first phase and outputs of the second and third transmitters are modulated by the second phase.
Abstract:
A method of operating a frequency modulated continuous wave (FMCW) radar system includes receiving, by at least one processor, digital intermediate frequency (IF) signals from a mixer coupled to a receive antenna. The method also includes computing, by the at least one processor, a motion metric based on the digital IF signals; operating, by the at least one processor, the FMCW radar system in a classification mode, in response to determining that the motion metric is above a threshold; and operating, by the at least one processor, the FMCW radar system in a detection mode, in response to determining that the motion metric is below the threshold for at least a first amount of time. An amount of power consumed by the FMCW radar system in the detection mode is less than an amount of power consumed by the FMCW radar system in the classification mode.
Abstract:
Aspects of the present disclosure provide for a radar system including a radar IC including a timing engine, a local oscillator, and a modulator. The timing engine is configured to generate one or more chirp control signals. The local oscillator is configured to receive the one or more chirp control signals and generate a frame including a first sequence of chirps according to the one or more chirp control signals. The modulator is configured to modulate the first sequence of chirps to generate a second sequence of chirps so the frame includes the first sequence of chirps and the second sequence of chirps offset by a first frequency value.
Abstract:
A system (10) for pedestrian use includes an accelerometer (110) having multiple electronic sensors; an electronic circuit (100) operable to generate a signal stream representing magnitude of overall acceleration sensed by the accelerometer (110), and to electronically correlate a sliding window (520) of the signal stream with itself to produce peaks at least some of which represent walking steps, and further operable to electronically execute a periodicity check (540) to compare different step periods for similarity, and if sufficiently similar then to update (560) a portion of the circuit substantially representing a walking-step count; and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the step count. Other systems, electronic circuits and processes are disclosed.