Abstract:
System and method for testing solar cells is provided. The system includes a first light source (101A) configured to generate a first optical beam; a second light source (101B) configured to generate a second optical beam; a reflector (102) for each light source, configured to collimate and direct each of the first optical beam and the second optical beam; a spectral filter assembly (120) associated with each of the first light source and the second light source, the spectral filter assembly configured to (a) receive the first optical beam and the second optical beam (b) split each of the first optical beam and the second optical beam into "N" smaller optical beams, and (c) filter the "N" smaller optical beams; a re-imaging assembly (122) for each spectral filter assembly configured to re-image the smaller "N" optical beam at a dichroic mirror that receives one or more N beams.
Abstract:
A system includes a light detection and ranging (LIDAR) device. The system further includes a LIDAR target. The LIDAR device is configured to direct a light beam at the LIDAR target. The system also includes a retro-reflective material in contact with the LIDAR target.
Abstract:
A system includes a light detection and ranging (LIDAR) device. The system further includes a LIDAR target. The LIDAR device is configured to direct a light beam at the LIDAR target. The system also includes a retro-reflective material in contact with the LIDAR target.
Abstract:
A light assembly is configured to provide a uniform light pattern onto a target, and may include a housing, a light source retained within the housing, wherein the light source is configured to generate a generated light beam, and a light homogenizer retained with the housing and disposed within a light path downstream from the light source. The light homogenizer includes a main body having an input end and an output end, and is configured to receive the generated light beam at the input end. The light homogenizer is configured to homogenize the generated light beam and output homogenized light at the output end. A focusing lens may be moveably retained with the housing and disposed within the light path downstream from the light homogenizer. The focusing lens is configured to focus the homogenized light onto the target.
Abstract:
A laser detection and warning system and associated methods of warning a pilot of an aircraft of incoming laser radiation and determining a location of a source of laser radiation including a detector configured to be mounted to an aircraft, the detector having an optical subsystem, a detector subsystem, and a processor subsystem to determine characteristics of incoming laser radiation and transmit a laser warning output signal, wherein the laser warning output signal may include wavelength characteristics of the laser radiation, corresponding protective eyewear type, and location of the source of the laser radiation.
Abstract:
A laser range finder including a laser configured to project a laser beam onto a target object thereby causing a target beam to be reflected from the target object, wherein the laser beam has a frequency, and wherein the frequency is modulated at a known rate, a first beam splitter positioned to split a reference beam from the laser beam, a second beam splitter positioned to receive the target beam and the reference beam, wherein the target beam and the reference beam are coherently combined, the coherently combined beams establishing a difference frequency, and a detector configured to measure the difference frequency.
Abstract:
An imaging system is configured to form images of a target based on a plurality of reflected light signals. The imaging system may include a light transmission assembly configured to transmit a plurality of light signals towards the target. Each of the plurality of light signals has a unique characteristic that differs from the other of the plurality of light signals. A light detector assembly is configured to receive and detect the plurality of light signals reflected from the target and distinguish each of the plurality of light signals based on the unique characteristic of each of the plurality of light signals.
Abstract:
A laser detection and warning system and associated methods of warning a pilot of an aircraft of incoming laser radiation and determining a location of a source of laser radiation including a detector configured to be mounted to an aircraft, the detector having an optical subsystem, a detector subsystem, and a processor subsystem to determine characteristics of incoming laser radiation and transmit a laser warning output signal, wherein the laser warning output signal may include wavelength characteristics of the laser radiation, corresponding protective eyewear type, and location of the source of the laser radiation.
Abstract:
A laser range finder including a laser configured to project a laser beam onto a target object thereby causing a target beam to be reflected from the target object, wherein the laser beam has a frequency, and wherein the frequency is modulated at a known rate, a first beam splitter positioned to split a reference beam from the laser beam, a second beam splitter positioned to receive the target beam and the reference beam, wherein the target beam and the reference beam are coherently combined, the coherently combined beams establishing a difference frequency, and a detector configured to measure the difference frequency.