Abstract:
A method for detecting an icing condition using an apparatus comprising a piezoelectric material and a vibration detector. The piezoelectric material has a surface proximate to a surface of a vehicle. The piezoelectric material is configured to vibrate. The vibration detector is configured to detect a change in vibrations in the piezoelectric material that indicates a presence of an icing condition on the surface of the piezoelectric material.
Abstract:
A method, apparatus, and system for mitigating undesired effects of a vehicle traveling at a speed greater than a critical Mach number for the vehicle. Ultraviolet energy is generated using a plurality of ultraviolet energy sources associated with an interior structure of the vehicle that travels at the speed greater than the critical Mach number for the vehicle. The ultraviolet energy is transported from the plurality of ultraviolet energy sources past an exterior of the vehicle around a selected location of the vehicle. A plasma is created around the selected location to mitigate the undesired effects of the vehicle traveling at the speed greater than the critical Mach number for the vehicle.
Abstract:
An acoustic metamaterial including cells to digitally process an incoming sound waveform, and to produce a corresponding response sound waveform as a function of a frequency and a phase of the incoming sound waveform, to produce a total response sound waveform that, when combined with the incoming sound waveform, modifies the incoming sound waveform.
Abstract:
A system for generating an energy beam based laser includes an apparatus for receiving an energy beam and for generating an energy beam based laser. The apparatus is configurable or controllable for tuning an output wavelength of the laser generated by the apparatus using the energy beam. The apparatus includes a first component for producing a first magnetic field oriented in a first direction and a second component for producing a second magnetic field oriented in a second direction substantially opposite to the first direction. A channel through the apparatus is defined by the first component and the second component through which the energy beam passes to generate the laser at an output of the apparatus. The apparatus is configurable or controllable for modifying at least one of the first magnetic field and the second magnetic field for tuning the output wavelength of the laser.
Abstract:
An apparatus for magnetic field compression includes a toroid and a plurality of separate coils wound around the toroid. The coils are spaced about a circumference of the toroid and each coil generates a magnetic field in response to electric current flowing in the coil. The toroid and a group of the coils each include a size that respectively gradually decreases over a predetermined portion of the toroid. The magnetic field is compressed or has a highest magnetic flux density proximate a central region of the coils around the toroid.
Abstract:
A system for generating an energy beam based laser includes an apparatus for receiving an energy beam and for generating an energy beam based laser. The apparatus is configurable or controllable for tuning an output wavelength of the laser generated by the apparatus using the energy beam. The apparatus includes a first component for producing a first magnetic field oriented in a first direction and a second component for producing a second magnetic field oriented in a second direction substantially opposite to the first direction. A channel through the apparatus is defined by the first component and the second component through which the energy beam passes to generate the laser at an output of the apparatus. The apparatus is configurable or controllable for modifying at least one of the first magnetic field and the second magnetic field for tuning the output wavelength of the laser.
Abstract:
A thermal insulation system for an aircraft is provided. The thermal insulation system includes a carrier and a container. The carrier has an interior surface including a first plurality of magnets that generate a first magnetic field, and an exterior surface that is thermally coupled to at least one high temperature component. The container is surrounded by the interior surface of the carrier, has an exterior surface including a second plurality of magnets that generate a second magnetic field oriented opposite the first magnetic field, and has an interior surface that is thermally coupled to at least one temperature sensitive component. The first magnetic field and the second magnetic field generate a gap between the carrier and the container to reduce a heat transfer from the at least one high temperature component to the at least one temperature sensitive component during operation of the aircraft.
Abstract:
A thermal insulation system for an aircraft that includes leading surfaces is provided. The thermal insulation system includes a carrier and a container. The carrier has an interior surface that includes a first plurality of magnets that generate a first magnetic field, and an exterior surface that is thermally coupled to the leading surfaces of the aircraft. The container is surrounded by the interior surface of the carrier, has an exterior surface including a second plurality of magnets that generate a second magnetic field oriented opposite the first magnetic field, and has an interior that includes electronics. The first magnetic field and the second magnetic field generate a gap between the carrier and the container to reduce a heat transfer from the leading surfaces to the electronics during operation of the aircraft.
Abstract:
A light detection system may include a light detecting assembly including a plurality of light detectors. Each light detector may include a substrate, a mirror coupled to the substrate, and a light-receiving tube coupled to the substrate. The light-receiving tube may include a sensor positioned at a first end, a light-transmissive opening at a second end that is opposite from the first end, and a plurality of partitions that are configured to block transmission of light energy. A central light path extends through the light-receiving tube. The system may also include a control unit in communication with the light detecting assembly. The control unit is configured to determine one or more of a direction of light emitted from a light source, a position of the light source, or an intensity of light emitted from the light source based on one or more light detection signals received from the light detecting assembly.
Abstract:
A solid-state device having a substrate that receives an ionizing radiation, logic circuits, integrity circuits, and a collection circuit. The logic circuits are operational to perform logic functions. The logic circuits are located in an area on the substrate, and are individually susceptible to a possible corruption by the ionizing radiation. Each integrity cell is initialized to a predetermined state. The integrity cells are located in the area on the substrate, arranged in a pattern neighboring the logic circuits, and individually susceptible to disrupting the predetermined state in response to the ionizing radiation. The collection circuit is located on the substrate. The collection circuit is operational to read the plurality of integrity cells, and assert a report signal that identifies the possible corruption in a subset of the logic circuits due to the ionizing radiation in response to reading an incorrect state in a neighboring one of the integrity cells.