Abstract:
A method of removing organic carbon in biological wastewater treatment includes the steps of: (a) oxidizing organic carbon to carbon dioxide with elemental sulfur as an electron carrier, and reducing the elemental sulfur to sulfide; (b) oxidizing the sulfide to elemental sulfur by recycled nitrate through controlling one or more of a recycling ratio to maintain an oxidation reduction potential (ORP) within the range of −360 mv to −420 mv, using an auto ORP controller; (c) recycling the elemental sulfur formed during oxidation of the sulfide back to the oxidation of the organic carbon; and (d) oxidizing ammonium to nitrate then partially recycled back for sulfide oxidation.
Abstract:
Sewage treatment is performed by using Sulphur to facilitate electron flow. A first cycle uses a sulphur composition having sulphur and/or sulphur compounds to transfer electrons from organic carbon to oxygen, nitrate and nitrite, and to convert phosphorus-containing compounds to solid material, which is retained in sewage sludge. The sulphur is further used to perform denitrification of nitrogen compounds. A further cycle uses oxygen to oxidize any ammonia present to nitrate and/or nitrite.
Abstract:
Sewage treatment is performed by using Sulphur to facilitate electron flow. A first cycle uses a sulphur composition having sulphur and/or sulphur compounds to transfer electrons from organic carbon to oxygen, nitrate and nitrite, and to convert phosphorus-containing compounds to solid material, which is retained in sewage sludge. The sulphur is further used to perform denitrification of nitrogen compounds. A further cycle uses oxygen to oxidize any ammonia present to nitrate and/or nitrite.
Abstract:
Wastewater influent is supplied to an aeration zone having a membrane module. Activated sludge is established in the aeration zone and an oxygen surplus is maintained by controlling a rate of oxygen supplied to the aeration zone. Wastewater influent is mixed with the activated sludge to form a first mixed liquid. A portion of the first mixed liquid is filtered to form a filtrate and unfiltered activated sludge. The unfiltered activated sludge is mixed with the activated sludge in the aeration zone to form the first mixed liquid. A portion of the first mixed liquid is transferred from the aeration zone to an anaerobic zone, and a second portion of first mixed liquid is mixed with activated sludge in the anaerobic zone to form a second mixed liquid. The second mixed liquid is recycled to the aerobic zone.