Abstract:
The present invention is drawn toward luminogens and chemical compositions comprising a target recognition motif, a hydrophilic moiety, a linking moiety, and at least one luminogen. Additionally presented are methods of: assessing the conversion of a prodrug into its active form, assessing the therapeutic efficacy of a prodrug, detecting glutathione in a biological sample, detecting alkaline phosphatase in a sample, and conducting fluorescence imaging or magnetic resonance imaging with the use of luminogen-containing compositions.
Abstract:
The present subject matter relates to ATE luminogens for visualization and treatment of cancer, particularly AIE luminogenic probes for cancer cell visualization and discrimination, lysosome-targeting AIEgens for imaging and autophagy visualization, highly fluorescent AIE-active theranostic agents for monitoring drug distribution and having anti-tumor activity to specific cancer cells, probes comprising AIE luminogens for cancer cell imaging and staining, AIE luminogens having clusteroluminogenic features and applications thereof, and methods of preparing thereof.
Abstract:
The present subject matter is directed to a luminogen exhibiting aggregation induced emission, wherein T1, T2, and T3 comprise one or more polyynes as a conjugated bridge. The present subject matter is also directed to an AIEgen comprising a hydrophilic pyridium group as a strong electron-withdrawing group; a piperazine group as an electron-donating group; and a α-Cyanostilbene; wherein the AIEgen exhibits aggregation induced emission. The present subject matter is directed to a method of synthesizing an AIEgen and is further directed to a method of labeling comprising incubating a subject having cells with a conjugate formed by conjugating an AIEgen with an antibody; and selectively labeling desired cells by turn-on imaging, wherein labeling occurs when the desired cells are selectively stained by fluorescent emission of the AIEgen upon degradation of the antibody after cellular internalization of the conjugate through endocytosis.
Abstract:
Provided herein are fluorescent bioprobes comprising fluorogens that exhibit aggregation-induced emission (AIE) labeled on biomolecules. The present subject matter relates to a fluorescent bioprobe comprising one or more fluorogen labeled on chitosan. The present subject matter is also directed to methods of preparing the fluorescent bioprobes, methods of labeling and detecting DNA and/or proteins with the fluorescent bioprobe, and methods of cell imaging including live cell tracking.