Abstract:
Dielectric waveguide comprising a plurality of resonator groups disposed on a substrate, wherein each of the resonator groups comprises one or more integrally-formed resonators, each obtained by coating a dielectric body with a conductor film, wherein each resonator group in at least a set of resonator groups of the plurality of resonator groups comprises waveguide-side slot exposing the dielectric body in a bottom surface thereof, wherein the substrate comprises a cavity surrounded by conductor patterns formed in the upper and lower surfaces, and by a via hole connecting the conductor patterns in the upper and lower surfaces, wherein the cavity comprises a set of substrate-side slots exposing the core material, the set of substrate-side slots being provided at a position to which waveguide-side slots of the set of resonator groups are opposed, and wherein resonator groups in the set of resonator groups are coupled together via the cavity.
Abstract:
A dielectric waveguide includes a dielectric of a rectangular parallelepiped in shape, an input/output electrode formed on a first face of the dielectric, and a conductor film formed on an outer face of the dielectric. The input/output electrode extends from a first end which is a vertex or a neighborhood of the vertex of a first face (bottom face) of the dielectric inward on the bottom face; and environs along both sides and the first end of the input/output electrode include a conductor-unformed section in which there is no conductor film.
Abstract:
The present invention provides a dielectric waveguide input/output structure for connecting to a coaxial connector a plurality of dielectric waveguide resonators each comprising an approximately parallelepiped-shaped dielectric block, wherein the plurality of dielectric waveguide resonators include a first dielectric waveguide resonator and a second dielectric waveguide resonator each having an exterior coated with an electrically conductive film, except for a coupling window, wherein each of the coupling window is formed with a probe composed of an electrically conductive film, the probe having one end connected to a feeding point, and the other end connected to the electrically conductive film, and wherein the first dielectric waveguide resonator and the second dielectric waveguide resonator are arranged in such a manner that the one side surfaces thereof are located in opposed relation to each other.
Abstract:
[Technical Problem]In a dielectric waveguide input/output structure for performing conversion from a dielectric waveguide through a microstrip to a coaxial line, the conversion is performed once to the microstrip line, and then further to the coaxial line, resulting in a greater loss. Thus, there has been a problem that degradation in performance is unavoidable. Further, the microstrip is required to have a certain level or more of length so as to prevent reduction in size of the printed circuit board. This has been an impediment to downsizing of the input/output structure.[Solution to the Problem]Provided is an input/output structure for a dielectric waveguide, comprising a rectangular-parallelepiped-shaped dielectric block, a plate-shaped dielectric plate, and a feeder line comprising a line-shaped electrically conductive foil sandwiched between the dielectric block and the dielectric plate.
Abstract:
Dielectric waveguide comprising dielectric body having an exterior coated with an electrically conductive film. Region in one side surface couples to another dielectric waveguide, and slot in bottom surface exposes the dielectric body in an L-shape in two adjacent side surfaces, except for the one side surface. Front surface of printed circuit board has a ground pattern opposed to the slot, which includes opening with outer shape greater than slot, and a back surface having a ground pattern surrounding a strip line disposed to cross through the slot. A distal end of the strip line and the front surface-side ground pattern are coupled together by a via hole. The opening is surrounded by a via hole group which couples the front and the back surface-side ground patterns together. The dielectric waveguide is disposed to allow the opening and the slot to be opposed to each other.
Abstract:
[OBJECT] It is directed to solving a problem that designing for a conventional waveguide slot antenna capable of radiating a circularly polarized wave involves complicated calculation, and a resulting circularly polarized wave antenna device can obtain a satisfactory axial ratio only in a narrow band.[SOLUTION] The present invention provides a waveguide slot antenna which utilizes a waveguide as a feeding line and has a linear-shaped slot provided in a wall of the waveguide. The waveguide slot antenna is characterized in that it comprises a pair of polarized wave conversion members surrounding an outer periphery of the slot and divided by a slit intersecting the slot.[EFFECT] The present invention can provide a waveguide slot antenna capable of radiating a circularly polarized wave with a satisfactory axial ratio characteristic, over a wide band, only by adding a simple component to a conventional waveguide slot antenna.
Abstract:
[Technical problem]A conventional dielectric waveguide input/output structure has a strength of coupling which is adjusted by a length of an input/output electrode. However, there is a limitation in an adjustable range of the coupling, which makes it impossible to have an input/output structure with wider bandwidth.[Solution to the technical problem]A dielectric waveguide input/output structure is provided, which comprises an input/output point provided near the center on one side of a bottom surface of a rectangular parallelepiped-shaped dielectric body, wherein an outer periphery of the dielectric body is covered with an electrically conductive film, except for an L-shaped lateral part extending along an edge of the bottom surface from opposite sides of the input/output point and for a surrounding part of the input/output point in a lateral surface with which the input/output point is in contact.
Abstract:
The present invention provides a dielectric waveguide resonator comprising a pair of rectangular parallelepiped-shaped dielectric blocks being in contact with each other through respective contact surfaces thereof. The dielectric waveguide resonator has an outer periphery coated with an electrically conductive film except for the contact surfaces, and is configured to resonate in a TE mode. A probe composed of an electrically conductive film is formed on at least one of the contact surface. Thus, it becomes possible to provide a dielectric waveguide resonator having a simple structure, requiring no adjustment structure, and comprising a structure for conversion between a dielectric waveguide and a coaxial line.