Abstract:
Una dispersión que contiene un polímero ignífugo, que comprende un disolvente orgánico y un polímero ignífugo dispersado en el mismo, en la que el polímero ignífugo se obtiene por tratamiento térmico de una dispersión en la que un polímero de acrilonitrilo se dispersa en un disolvente orgánico polar, en presencia de al menos un ácido, un anhídrido ácido o un cloruro ácido, y en la que una resistencia a la tracción en agua por área unitaria en sección transversal del polímero ignífugo es 1,0 MPa o más y 6,5 MPa o menos, medida para una película obtenida estirando la dispersión que contiene el polímero ignífugo, coagulando la película en agua a entre 25ºC y 30ºC, cortando la película hasta un grosor de 100 Μm a 150 Μm, sujetando la película de manera que el sitio de longitud de muestra es de 10 mm, midiendo la resistencia a la tracción de la película en agua a una velocidad de 20 mm/min usando una máquina de prueba de tracción y dividiendo el valor de la resistencia a la tracción por un área en sección transversal de un plano perpendicular a la dirección de la prueba de tracción.
Abstract:
Una fibra resistente a la llama que comprende un polímero resistente a la llama que es soluble en undisolvente orgánico polar y está modificado en un disolvente orgánico polar por un compuesto a base de amina y unagente oxidante como constituyente, en el que el coeficiente de variación de áreas en sección transversal de unafibra individual es del 25% o menos.
Abstract:
In a flame resistant fiber assembly obtainable by fiber forming a flame resistant polymer, a flame resistant fiber of a higher performance is obtained by improving fiber forming ability. A carbon fiber of a high performance is obtained by carbonizing the flame resistant fiber. At obtaining a flame resistant fiber by subjecting a solution containing a flame resistant polymer modified by an amine-based compound to a wet spinning or a semi-dry spinning in a coagulation bath in such a way that a degree of swelling of a coagulated yarn at the outlet of the coagulation bath is 100 to 1000 wt% and then, in a bath, subjecting to a drawing and/or water washing and to a drying under tension, the flame resistant fiber is produced by controlling temperature of the drawing bath/water washing bath, drying temperature or tension in such a way that the obtained fiber would not crystallize. And, a carbon fiber is produced by carbonizing said flame resistant fiber.
Abstract:
A flame-resistant polymer excelling in moldability capable of providing a flame-resistant molded item of novel configuration; a relevant flame-resistant polymer solution; a process for easily producing them; a carbon molding from the flame-resistant polymer; and a process for easily producing the same. There is provided a flame-resistant polymer modified with an amine compound. Further, there is provided a flame-resistant polymer solution in which the polymer is dissolved in a polar organic solvent. Still further, there is provided a flame-resistant molding whose part or entirety is constituted of the flame-resistant polymer modified with an amine compound. Moreover, there is provided a carbon molding whose part or entirety is constituted of a carbon component resulting from carbonization of the flame-resistant polymer modified with an amine compound. Still further, there is provided a process for producing them. From the solution containing the flame-resistant polymer, moldings of various configurations can be obtained through further work.
Abstract:
PROBLEM TO BE SOLVED: To obtain carbon fibers having excellent rigidity, bending strength and adhesiveness to a resin without inducing inflation of a cost and lowering of processability and suitable for a reinforced composite material, etc., by making an acrylic precursor to be fire resistant and carbonizing under a specific condition. SOLUTION: This carbon fiber has a tensile Young's modulus YM (GPa) and a nitrogen content NC(%) satisfying formulae I and II and crystal orientation π002(%) and crystal size Lc (Å) both calculated from X-ray diffraction satisfying formulae III and IV, 1.01-1.25 a surface area ratio and 20-40 spreading index, and is obtained by making an acrylic precursor having fine particles comprising an organic-based compound or a silicon-based compound on the fiber surface to be fire resistant at 0.85-1.0 draw ratio so as to have 0.05-5 % solubility in formic acid and previously carbonizing in an inert atmosphere at 300-800 deg.C and 1.0-1.5 draw ratio, and further carbonizing in an inert atmosphere at 800-1,600 deg.C.
Abstract:
PURPOSE:To obtain graphite fiber, having ultrahigh elastic modulus and high strength and excellent in grade. CONSTITUTION:The heating furnace for producing graphite fiber comprises having a resistance heating element composed of a graphite material containing boron or a compound thereof. Furthermore, this method for producing the graphite fiber comprises continuously treating carbon fiber with the resistance heating element composed of the graphite material containing the boron or its compound at >=2000 deg.C in an inert atmosphere.