Abstract:
A thermoplastic polyester resin composition is obtained by blending, per 100 parts by weight of (A) a thermoplastic polyester resin, 0.1 to 5 parts by weight of (B) a novolac type epoxy resin having a specific structure, and 0.05 to 10 parts by weight of (C) an epoxy compound having two epoxy functional groups per molecule. Thus, a molded article that exhibits superior melt stability with respect to a wide range of processing temperatures, has excellent mechanical properties and heat resistance, and exhibits superior long-term hydrolysis resistance, chemical resistance, and oxidative deterioration resistance can be obtained.
Abstract:
A thermoplastic polyester resin includes a residue of an aromatic dicarboxylic acid or an ester-forming derivative thereof and a residue of a diol or an ester-forming derivative thereof, as main structural units, wherein the thermoplastic polyester resin has a hydroxy group concentration of 0.050 mmol/g or less. The use of such a thermoplastic polyester resin enables production of a molded article having excellent mechanical properties and heat resistance, and a reduced dielectric loss tangent at a high frequency of 1 GHz or more.
Abstract:
A thermoplastic polyester resin composition includes 0.05 to 10 parts by weight of an epoxy compound (B) and 0.001 to 1 part by weight of a hindered amine compound (C) with respect to 100 parts by weight of a thermoplastic polyester resin (A) having an amount of carboxyl groups of 50 eq/t or less. The thermoplastic polyester resin composition is capable of producing a molded article which is excellent in mechanical properties and heat resistance, as well as in long-term hydrolysis resistance, and has a small decrease in mechanical properties and hydrolysis resistance even when melt-processed at a high temperature of 270° C. or more.
Abstract:
Provided is a thermoplastic polyester resin composition comprising 100 parts by weight of (A) a non-liquid crystal thermoplastic polyester resin, 45 to 150 parts by weight of (B) a thermoplastic resin that is different from the non-liquid crystal thermoplastic polyester resin and has a dielectric loss tangent of not more than 0.005 when measured at a frequency of 5.8 GHz by the cavity resonance perturbation method, 2 to 20 parts by weight of (C) a compatibilizer having at least one reactive functional group selected from epoxy, acid anhydride, oxazoline, isocyanate, and carbodiimide groups, and 0.2 to 5 parts by weight of (D) at least one compound selected from tertiary amines, amidine compounds, organic phosphines and salts thereof, imidazoles, and boron compounds, wherein the ratio of the sum of the thermoplastic resin (B) and the compatibilizer (C) is in the range of 50 to 150 parts by weight and the weight ratio (B)/(C) of the thermoplastic resin (B) to the compatibilizer (C) is in the range of 8 to 50. The thermoplastic polyester resin composition can be molded into an article with low dielectric properties, excellent mechanical properties, and high bondability to metals.
Abstract:
A thermoplastic polyester resin composition includes 0.05 to 10 parts by weight of an epoxy compound (B) and 0.001 to 1 part by weight of a hindered amine compound (C) with respect to 100 parts by weight of a thermoplastic polyester resin (A) having an amount of carboxyl groups of 50 eq/t or less. The thermoplastic polyester resin composition is capable of producing a molded article which is excellent in mechanical properties and heat resistance, as well as in long-term hydrolysis resistance, and has a small decrease in mechanical properties and hydrolysis resistance even when melt-processed at a high temperature of 270° C. or more.
Abstract:
A thermoplastic polyester resin composition has an excellent retention stability and is capable of producing a molded article excellent in mechanical properties and heat resistance as well as in long-term hydrolysis resistance; and the molded article. The thermoplastic polyester resin includes 100 parts by weight of a thermoplastic polyester resin (A) and 0.1 to 10 parts by weight of a biphenyl aralkyl-type epoxy resin or cyclopentadiene-type epoxy resin (B) of a specific type.
Abstract:
A thermoplastic polyester resin composition is obtained by blending, with respect to (A) 100 parts by weight of a thermoplastic polyester resin, (B) 0.1-50 parts by weight of at least one phosphinate selected from phosphinates and diphosphinates, (C) 0.1-10 parts by weight of a phosphazene compound, (D) 0.1-50 parts by weight of a nitrogen-based flame retardant, (E) 0.1-10 parts by weight of a polyfunctional epoxy compound, and (F) 0.1-20 parts by weight of an olefin resin. The ratio of the parts by weight of component (B) and the parts by weight of component (C) is 2.0-8.0.
Abstract:
A thermoplastic polyester resin composition has an excellent retention stability and is capable of producing a molded article excellent in mechanical properties and heat resistance as well as in long-term hydrolysis resistance; and the molded article. The thermoplastic polyester resin includes 100 parts by weight of a thermoplastic polyester resin (A) and 0.1 to 10 parts by weight of a biphenyl aralkyl-type epoxy resin or cyclopentadiene-type epoxy resin (B) of a specific type.
Abstract:
A thermoplastic polyester resin composition is obtained by blending, per 100 parts by weight of (A) a thermoplastic polyester resin, 0.1 to 5 parts by weight of (B) a novolac type epoxy resin having a specific structure, and 0.05 to 10 parts by weight of (C) an epoxy compound having two epoxy functional groups per molecule. Thus, a molded article that exhibits superior melt stability with respect to a wide range of processing temperatures, has excellent mechanical properties and heat resistance, and exhibits superior long-term hydrolysis resistance, chemical resistance, and oxidative deterioration resistance can be obtained.
Abstract:
A thermoplastic polyester resin composition includes 100 parts by weight of a thermoplastic polyester resin (A) having a melting point of 180 to 250° C. and 0.01 to 1 part by weight of a metal halide (B), wherein an area average particle size of the metal halide (B) in the thermoplastic polyester resin composition is 0.1 to 500 nm. The thermoplastic polyester resin composition has an excellent melt retention stability and is capable of producing a molded article excellent in mechanical properties and long-term resistance to oxidative degradation.