Abstract:
There is disclosed an ultraviolet radiation device. The device comprises a base portion, a plurality of semiconductor structures connected to the base portion and an ultraviolet radiation transparent element connected to the plurality of semiconductor structures. Preferably: (i) the at least one light emitting diode is in direct contact with the ultraviolet radiation transparent element, or (ii) there is a spacing between the at least one light emitting diode and the ultraviolet radiation transparent element, the spacing being substantially completely free of air. There is also disclosed a fluid treatment system incorporating the ultraviolet radiation device.
Abstract:
A radiation sensor device comprising a body portion having an entrance through which radiation may enter the body portion, a radiation detector and an optical filter interposed between the entrance and the radiation detector. The radiation detector is capable of detecting radiation having at least one wavelength in the range of from about 125 nm to about 1100 nm, and comprises: (i) a silicon-containing material comprising an n-doped layer disposed on a pair of p-doped layers, and (ii) a passivation layer disposed on a radiation impingement surface of the siliconcontaining material, the passivation layer comprising nitrided silicon dioxide, a metal silicide and mixtures thereof. The optical filter has: (i) an optical transmittance of at least about 40% at a wavelength in the range of from about 175 nm to about 300 nm, and (ii) an optical transmittance of no greater than about 5% at a wavelength greater than about 350 nm.
Abstract:
Se describe un dispositivo de radiación ultravioleta. El dispositivo comprende una porción base, una pluralidad de estructuras semiconductoras conectadas con la porción base y un elemento transparente de radiación ultravioleta conectado con la pluralidad de estructuras semiconductoras. Preferiblemente: (i) por lo menos un diodo emisor de luz está en contacto directo con el elemento transparente de radiación ultravioleta, o (ii) se presenta una separación entre por lo menos un diodo emisor de luz y el elemento transparente de radiación ultravioleta, la separación está sustancialmente por completo libre de aire. También se describe un sistema de tratamiento de fluido que incorpora el dispositivo de radiación ultravioleta.
Abstract:
There is disclosed a process for measuring transmittance of a fluid in a radiation field comprising polychromatic radiation - i.e., radiation at a first wavelength and radiation at a second wavelength different from the first wavelength. The process comprises the steps of: (i) positioning a polychromatic radiation source and a polychromatic radiation sensor element in a spaced relationship to define a first thickness of fluid in the radiation field; (ii) detecting a first . radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the first thickness; (iii) detecting a second radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the first thickness; (iv) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the second thickness; (vi) detecting a fourth radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the second thickness; and (vii) calculating radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and the fourth radiation intensity. Thus, the present process relates to a novel manner to measure UV transmittance of a fluid in an on-line or random measurement manner.
Abstract:
There is disclosed an ultraviolet radiation device. The device comprises a base portion, a plurality of semiconductor structures connected to the base portion and an ultraviolet radiation transparent element connected to the plurality of semiconductor structures. Preferably: (i) the at least one light emitting diode is in direct contact with the ultraviolet radiation transparent element, or (ii) there is a spacing between the at least one light emitting diode and the ultraviolet radiation transparent element, the spacing being substantially completely free of air. There is also disclosed a fluid treatment system incorporating the ultraviolet radiation device.
Abstract:
There is disclosed an ultraviolet radiation device. The device comprises a base portion, a plurality of semiconductor structures connected to the bas e portion and an ultraviolet radiation transparent element connected to the plurality of semiconductor structures. Preferably: (i) the at least one ligh t emitting diode is in direct contact with the ultraviolet radiation transpa rent element, or (ii) there is a spacing between the at least one light emit ting diode and the ultraviolet radiation transparent element, the spacing be ing substantially completely free of air. There is also disclosed a fluid tr eatment system incorporating the ultraviolet radiation device.
Abstract:
A process for measuring transmittance of a fluid with first and second radiation wavelengths includes (i) positioning a polychromatic radiation source and a polychromatic radiation sensor in a spaced relationship to define a first thickness of fluid; (ii) detecting a first radiation intensity corresponding to the first wavelength at the first thickness; (iii) detecting a second radiation intensity corresponding to the second wavelength at the first thickness; (iv) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to the first wavelength at the second thickness; (vi) detecting a fourth radiation intensity corresponding to the second wavelength at the second thickness; and (vii) calculating radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and the fourth radiation intensity.
Abstract:
The is described a process for determining a validated Reduction Equivalent Dose for reducing the concentration of a target contaminant contained in a fluid in a radiation fluid treatment system. In one embodiment, the process comprises the steps of: (a) determining a short wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a first region of the electromagnetic spectrum having a wavelength of less than or equal to about 240 nm; (b) determining a long wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a second region of the electromagnetic spectrum having a wavelength of greater than about 240 nm; and (c) summing the short wavelength Reduction Equivalent Dose and the long wavelength Reduction Equivalent Dose to produce the validated Reduction Equivalent Dose for the target contaminant. In a preferred embodiment, the present invention provides a useful approach for determining the relevant Reduction Equivalent Dose (RED) for Cryptosporidium disinfection and accomplishes this by using the discovered relation between the short wavelength sensor signal and the short wavelength RED, and subtracting the short wavelength RED from the RED determined using a challenge microbe with synthetic lamp sleeves, to obtain the long wavelength RED applicable to Cryptosporidium disinfection. In a bioassay, one would only need the short wavelength sensor reading and the challenge microbe RED using synthetic lamp sleeves to determine the applicable RED, once the relationship between the short wavelength sensor reading and the short wavelength RED was established.
Abstract:
There is disclosed a process for measuring transmittance of a fluid in a radiation field comprising polychromatic radiation - i.e., radiation at a first wavelength and radiation at a second wavelength different from the fir st wavelength. The process comprises the steps of: (i) positioning a polychromatic radiation source and a polychromatic radiation sensor element in a spaced relationship to define a first thickness of fluid in the radiation field; (ii) detecting a first . radiation intensity corresponding to radiati on at the first wavelength received by the sensor element at the first thicknes s; (iii) detecting a second radiation intensity corresponding to radiation at t he second wavelength received by the sensor element at the first thickness; (iv ) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the second thickness; (vi) detecting a fourth radiation intensity corresponding to radiation at the second waveleng th received by the sensor element at the second thickness; and (vii) calculatin g radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and thefourth radiation intensity. Thus, the present process relates to a novel manner to measure UV transmittance of a fluid in an on-li ne or random measurement manner.