Abstract:
Ejection and stop of a powder flow are switched while maintaining a once generated steady flow without stopping it. A processing nozzle includes a supply source of a fluid containing a powder, a first channel through which the fluid supplied from the supply source passes, a second channel that supplies the fluid to an ejection port of the nozzle, a third channel that releases the fluid outside the nozzle, and a switch that causes the first channel and the second channel to communicate with each other when supplying the fluid to the ejection port, and causes the first channel and the third channel to communicate with each other when not supplying the fluid to the ejection port.
Abstract:
An optical processing head that detects a trouble of an optical processing head that will be generated at the time of optical processing before the trouble occurs is disclosed. The optical processing head that performs processing by condensing, on a process surface, a ray emitted by a light source for processing includes a cylindrical housing that surrounds a ray for processing emitted by the light source for processing, a ray emitter for inspection that is incorporated in the cylindrical housing and arranged outside the path of the ray for processing, and a light receiver that is incorporated in the cylindrical housing, arranged outside the path of the ray for processing, and receives a ray for inspection emitted by the ray emitter for inspection. The contamination of the inner surface of the cylindrical housing or the concentration of a scattering object flowing into the cylindrical housing is inspected by using a signal acquired from the light receiver.
Abstract:
An overall apparatus is downsized by reducing the size of a light beam branching structure. There is provided an optical processing head including an optical element group that guides a processing light beam from a light source to a process surface, and a light beam branching portion that branches reflected light of the processing light beam from the process surface and an observation light beam for observing a state of the process surface. The light beam branching portion is arranged on a light beam path of the processing light beam, and includes, between the optical element group and the process surface, a half mirror that guides the observation light beam to an observation optical system.
Abstract:
An optical processing head capable of reducing the energy loss at the time of optical processing is disclosed. The optical processing head includes a first optical element that converts light emitted by a light source into first parallel light, a second optical element that is arranged downstream of the first optical element and converts the first parallel light into first divergent light, a third optical element that is arranged downstream of the second optical element and converts the first divergent light into second parallel light, and a fourth optical element that is arranged downstream of the third optical element and converts the second parallel light into convergent light which is condensed on the processing surface side.