Abstract:
The present invention provides an assembly of molding materials, each of which is obtained by covering a carbon fiber bundle that contains an impregnation assistant with a thermoplastic resin. This assembly of molding materials is configured such that 30% or more of the whole assembly is a molding material that satisfies 100≤F/L (N/m), where L is the molding material length in the axial direction of the carbon fiber bundle and F is the grip force of the carbon fiber bundle with respect to the molding material. Consequently, falling-off of carbon fibers from the molding materials during injection molding is able to be prevented, so that a molded body is able to be produced with high production efficiency.
Abstract:
Provided is a method for manufacturing a composite material including peforming press molding a fiber matrix structure including reinforcing fibers and a matrix resin which mainly includes a polyester-based resin and includes an aromatic polycarbonate resin and. Furthermore, it is preferred that the polyester-based resin is a polyester copolymer and includes a terephthalic acid component and an isophthalic acid component. In addition, it is preferred that the press molding is cold pressing in which a die temperature is 170° C. or lower; that the reinforcing fibers are carbon fibers or fibers mainly including discontinuous fibers; and furthermore, that the discontinuous fibers are randomly oriented in the structure.
Abstract:
A fiber-reinforced composite material obtained by reinforcing a matrix resin with fibers, wherein the matrix resin contains a thermoplastic resin and a carbon black, the fibers are discontinuous carbon fibers, a part of the discontinuous carbon fibers forms fiber bundles, and the thickness of a thinnest part of the matrix resin which is located between an outermost surface of the composite material and the fibers existing in an inside of the composite material is less than 100 μm. Further, it is preferred that the thermoplastic resin is a polyamide-based resin, that the discontinuous carbon fibers have a length of from 3 to 100 mm, and that the orientation of the discontinuous carbon fibers is random. Furthermore, it is preferred that the size of the primary particle diameter of the carbon black is within a range of 7 to 75 nm.
Abstract:
Disclosed is a method for manufacturing a composite material, which includes performing press molding of a fiber matrix structure including reinforcing fibers and a matrix resin mainly including a polyester-based resin having a crystallization temperature of 185° C. or lower. Furthermore, the polyester-based resin is preferably a polyester-based copolymer. In addition, it is preferred that the matrix resin includes a carbodiimide, and that the carbodiimide has a cyclic structure. Moreover, it is preferred that the press molding is cold pressing in which a die temperature is 170° C. or lower; that the reinforcing fibers are carbon fibers; and that the discontinuous fibers are randomly oriented in the structure.
Abstract:
A fiber-reinforced composite material obtained by reinforcing a matrix resin with fibers, wherein the matrix resin contains a thermoplastic resin and a carbon black, the fibers are discontinuous carbon fibers, a part of the discontinuous carbon fibers forms fiber bundles, and the thickness of a thinnest part of the matrix resin which is located between an outermost surface of the composite material and the fibers existing in an inside of the composite material is less than 100 μm. Further, it is preferred that the thermoplastic resin is a polyamide-based resin, that the discontinuous carbon fibers have a length of from 3 to 100 mm, and that the orientation of the discontinuous carbon fibers is random. Furthermore, it is preferred that the size of the primary particle diameter of the carbon black is within a range of 7 to 75 nm.
Abstract:
Disclosed is a method for manufacturing a composite material, which includes performing press molding of a fiber matrix structure including reinforcing fibers and a matrix resin mainly including a polyester-based resin having a crystallization temperature of 185° C. or lower. Furthermore, the polyester-based resin is preferably a polyester-based copolymer. In addition, it is preferred that the matrix resin includes a carbodiimide, and that the carbodiimide has a cyclic structure. Moreover, it is preferred that the press molding is cold pressing in which a die temperature is 170° C. or lower; that the reinforcing fibers are carbon fibers; and that the discontinuous fibers are randomly oriented in the structure.