Abstract:
There is provided a random mat including carbon fibers and a matrix resin, wherein the carbon fibers in the random mat have an average fiber length in a range of 3 mm to 100 mm, a fiber areal weight of the carbon fibers is 25 to 10,000 g/m2, the carbon fibers include a specific carbon fiber bundles having a specific opening degree in a specific amount per the total carbon fibers, and the specific carbon fiber bundles with a thickness of 100 μm or more are included in a ratio of less than 3% of the number of the total specific carbon fiber bundles.
Abstract:
A fiber reinforcing bundle with a sizing agent adhering to the surface thereof is provided, in which the sizing agent contains a thermoplastic resin as a main component and an emulsion or a dispersion, and in which a melt viscosity of a solid content of the sizing agent at 150° C. and at a shear rate of 10 s−1 is 50 to 300 Pa·s; and a method for producing the fiber reinforcing bundle. Preferably, the sizing agent contains a water-soluble polymer, the sizing agent contains a hardly water-soluble polymer, and the reinforcing fiber bundle is a carbon fiber bundle.
Abstract:
There is provided a reinforcing carbon fiber bundle of the present invention is a reinforcing carbon fiber bundle with a sizing agent adhered to surfaces of carbon fibers, and characterized in that the sizing agent is constituted by at least two components, a first component does not melt at 150° C., and a second component in flowable at 150° C., and the reinforcing carbon fiber bundle is improved in impregnation property and openability and is excellent in workability and optimum for a composite.
Abstract:
There is provided a reinforcing carbon fiber bundle of the present invention is a reinforcing carbon fiber bundle with a sizing agent adhered to surfaces of carbon fibers, and characterized in that the sizing agent is constituted by at least two components, a first component does not melt at 150° C., and a second component in flowable at 150° C., and the reinforcing carbon fiber bundle is improved in impregnation property and openability and is excellent in workability and optimum for a composite.
Abstract:
The present invention relates to a carbon fiber bundle excellent in terms of adhesion to matrix resins and process handleability and less apt to suffer the shedding of the sizing agent in processing steps, the carbon fiber bundle being a carbon fiber bundle having a sizing agent adherent to the surface thereof, characterized in that the carbon fiber bundle includes a plurality of carbon fibers and the sizing agent includes a copolyamide resin, the copolyamide resin having both a specific polyamide component and nylon-6 and/or nylon-66 as repeating units and having a melting point of 180° C. or lower, the copolyamide resin preferably having a melting of 60 to 160° ,or a glass transition temperature of −20 to 50° C.
Abstract:
There is provided a random mat including carbon fibers and a matrix resin, wherein the carbon fibers in the random mat have an average fiber length in a range of 3 mm to 100 mm, a fiber areal weight of the carbon fibers is 25 to 10,000 g/m2, the carbon fibers include a specific carbon fiber bundles having a specific opening degree in a specific amount per the total carbon fibers, and the specific carbon fiber bundles with a thickness of 100 μm or more are included in a ratio of less than 3% of the number of the total specific carbon fiber bundles.
Abstract translation:提供了包括碳纤维和基质树脂的无规毡,其中无规毡中的碳纤维的平均纤维长度在3mm至100mm的范围内,碳纤维的纤维面积重量为25至10,000g / m 2时,碳纤维包括具有特定开口度的特定碳纤维束,其特定开口度相对于总碳纤维为特定量,并且以小于3的比例包含厚度为100μm以上的特定碳纤维束 占总碳纤维束总数的百分比。
Abstract:
The present invention relates to a carbon fiber bundle excellent in terms of adhesion to matrix resins and process handleability and less apt to suffer the shedding of the sizing agent in processing steps the carbon fiber bundle being a carbon fiber bundle having a sizing agent adherent to the surface thereof, characterized in that the carbon fiber bundle includes a plurality of carbon fibers and the sizing agent includes a copolyamide resin, the copolyamide resin having both a specific polyamide component and nylon-6 and/or nylon-66 as repeating units and having a melting point of 180° C. or lower, the copolyamide resin preferably having a melting point of 60 to 160° C., or a glass transition temperature of −20 to 50° C.
Abstract:
An object of the present invention is to provide a sizing agent composition that gives a carbon fiber from which a carbon fiber-reinforced composite material having excellent adhesion between a resin and the carbon fiber and having excellent mechanical properties can be formed. The sizing agent composition of the invention is a sizing agent composition comprising (A) a blocked isocyanate, and (B) a compound containing at least one polar group and at least one unsaturated group per molecule. In the invention, the mixing ratio (mass ratio) of the blocked isocyanate (A) and the compound (B) containing at least one polar group and at least one unsaturated group per molecule (A/B) is preferably 95/5 to 5/95. In the invention, the blocked isocyanate (A) is preferably a compound having an aliphatic skeleton.
Abstract:
There is provided a random mat including carbon fibers and a matrix resin, wherein the carbon fibers in the random mat have an average fiber length in a range of 3 mm to 100 mm, a fiber areal weight of the carbon fibers is 25 to 10,000 g/m2, the carbon fibers include a specific carbon fiber bundles having a specific opening degree in a specific amount per the total carbon fibers, and the specific carbon fiber bundles with a thickness of 100 μm or more are included in a ratio of less than 3% of the number of the total specific carbon fiber bundles.
Abstract:
A carbon fiber bundle includes carbon fibers and a copolymerized polyolefin attached to the surface of the carbon fibers. The copolymerized polyolefin contains an aromatic vinyl compound and an acid and/or acid anhydride as copolymerization components. The amount of the copolymerized polyolefin attached is 0.01 to 10 parts by mass per 100 parts by mass of the carbon fiber bundle. The carbon fiber bundle may be used or contained in a random mat, a composite material, and various molded articles.