Abstract:
A vehicle body structure in which a vehicle body including an upper vehicle body and a lower vehicle body that are joined is constituted in whole or in part by a fiber-reinforced composite material, metal members are inserted into the respective upper vehicle body and lower vehicle body, the metal members being fastened to each other to form a joint portion, and at least two functional components are attached to the joint portion.
Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.
Abstract:
The present invention relates to a shaped product being excellent in isotropy constituted by a fiber-reinforced composite material in which discontinuous reinforcing fibers are isotropic in a plane and are two-dimensionally oriented in the thermoplastic resin, the reinforcing fibers contained in the shaped product includes a reinforcing fiber bundle (A) constituted by the reinforcing fibers of the critical single fiber number defined by formula (1) or more, a ratio of the reinforcing fiber bundle (A) to the total amount of the reinforcing fibers in the shaped product is 20 vol % or more and less than 90 vol %, and the average number (N) of the reinforcing fibers in the reinforcing fiber bundle (A) satisfies formula (2): Critical single fiber number=600/D (1) 0.7×104/D2
Abstract:
Provided a vehicle skeleton member including: a portion obtained by joining a plurality of members constituted by a composite material of a thermoplastic resin and a reinforcing fiber, and an axis parallel to a front-rear direction and/or a right-left direction of the vehicle body is included in a joined surface by vibration welding.
Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.
Abstract:
Friction-weld assemblies and methods of spin-welding are provided, where the components being joined are polymeric components. Designs provided for the polymeric components enable the use of relatively low speeds and pressures to achieve superior friction weld joints between the components. Further, large surface area polymeric components can be successfully friction welded with such designs. In certain variations, at least one polymeric component has a weld surface with a plurality of surface features that are concave (e.g., grooves) or convex. In other variations, the first component in the weld region has a distinct non-complementary shape from the second component, thus creating a progressive advancing weld line that avoids high temperatures that might incur damage to the polymeric component and weld joint. Such component designs additionally provide for improved flash management at the weld joint.
Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges and define top and side walls. A plurality of strategically thickened areas is on at least one of the top wall and side walls.
Abstract:
There is provided a joint body including: a reinforcing member having at least one random layer in which a chopped carbon fiber is randomly oriented in a thermoplastic resin, and at least one unidirectional material layer in which a continuous carbon fiber is unidirectionally arranged in a thermoplastic resin; and a reinforced member with an open sectional shape having at least one selected from the group consisting of a random layer and a unidirectional material layer,wherein the reinforcing member and the reinforced member are vibration-welded to form a hollow closed section.
Abstract:
There is provided a vehicle skeleton member including a composite material of a thermoplastic resin and a carbon fiber, wherein the composite material is a unidirectional carbon-fiber composite material (A) that a form of the carbon fiber in the composite material is a continuous fiber aligned in one direction and/or a random carbon-fiber composite material (B) that a form of the carbon fiber in the composite material is a discontinuous fiber arranged two-dimensionally randomly.
Abstract:
A vehicle floor structure, in which a main structure of the vehicle floor structure is a double deck structure including two sheets of panels formed from a fiber-reinforced thermoplastic composite material; in a region including the double deck structure, each of the panels includes at least two continuous reinforcing structures having a convex open cross-sectional shape; recesses are provided in at least two places of the reinforcing structures; and the panels are joined in such a manner that the reinforcing structures of the respective panels intersect with each other, and that the recesses provided in the reinforcing structures of the respective panels are fitted to each other.