Abstract:
A Java enterprise resource management (JERM) system and method are provided that allow both timing metrics and call metrics to be monitored and gathered in real-time, and which can cause appropriate actions to be taken in real-time. The JERM system provides a level of granularity with respect to the monitoring of methods triggered during a transaction that is equivalent to or better than that which is currently provided in the aforementioned known call-analysis resource management systems. In addition, the JERM system also provides information associated with the timing of hops that occur between servers, and between and within applications, during a transaction. Because all of this information is obtained in real-time, the JERM system is able to respond in real-time to cause resources to be scaled in or scaled out in a way that provides improved efficiency and productivity, and that enables the enterprise to quickly recover from resource failures.
Abstract:
A Java enterprise resource management (JERM) system and method are provided that allow both timing metrics and call metrics to be monitored and gathered in real-time, and which can cause appropriate actions to be taken in real-time. The JERM system provides a level of granularity with respect to the monitoring of methods triggered during a transaction that is equivalent to or better than that which is currently provided in the aforementioned known call-analysis resource management systems. In addition, the JERM system also provides information associated with the timing of hops that occur between servers, and between and within applications, during a transaction. Because all of this information is obtained in real-time, the JERM system is able to respond in real-time to cause resources to be scaled in or scaled out in a way that provides improved efficiency and productivity, and that enables the enterprise to quickly recover from resource failures.
Abstract:
Methods and systems are disclosed, including a method for executing a non-native code stream on a computing system. The method includes forming one or more blocks of emulated mode code for execution on a computing system. Each of the one or more blocks includes a preamble and a plurality of operators ordered for execution in a predetermined sequence, wherein for a specified block the preamble defines one or more conditions required for uninterrupted execution of the operators included in the specified block. The method also includes assessing the one or more conditions associated with the specified block, and, after assessing the one or more conditions, executing each of the operators included in the specified block without assessing any of the one or more conditions between execution of the operators within the specified block.
Abstract:
Methods and systems for moving or porting an enterprise software application from an enterprise environment to a cloud domain are disclosed. An automated moving software program identifies enterprise components of an enterprise software application. The program assigns an enterprise component tag to the identified enterprise component. The program then assigns an enterprise attribute tag to the identified enterprise component and searches an attribute relationship map for at least one cloud attribute related to the assigned enterprise attribute. On identification of such a cloud attribute, the cloud attribute is assigned to the identified enterprise component and the enterprise component is converted to cloud component by creating a new cloud component to replicate the functions of the enterprise component or assigning a cloud component tag to the enterprise component, provided the enterprise component is render-able on the cloud domain resources.
Abstract:
A Java enterprise resource management (JERM) system and methods that implement a work chain are provided that allow both timing metrics and call metrics to be monitored and gathered in real-time, and which can cause appropriate actions to be taken in real-time. The JERM system provides a level of granularity with respect to the monitoring of methods triggered during a transaction that is equivalent to or better than that which is currently provided in the aforementioned known call-analysis resource management systems. In addition, the JERM system also provides information associated with the timing of hops that occur between servers, and between and within applications, during a transaction. Because all of this information is obtained in real-time, the JERM system is able to respond in real-time to cause resources to be scaled in or scaled out in a way that provides improved efficiency and productivity, and that enables the enterprise to quickly recover from resource failures.
Abstract:
A computerized work chain and methods are provided. The work chain comprises at least one processing device configured to perform the computerized work chain M work queues implemented in the one or more processing devices, and a work queue handler implemented in the one or more processing devices, where M is a positive integer that is greater than or equal to one. Each work queue comprises a queue monitor, an exception monitor, a pool of worker threads, a logger, and a data queue. The work queue handler forms the work chain by linking the M work queues together such that respective outputs of a first one of the work queues through an Mnth-1 one of the work queues are linked to respective inputs of a second one of the work queues through an Mnth one of the work queues, respectively.
Abstract:
Methods and systems for moving or porting an enterprise software application from an enterprise environment to a cloud domain are disclosed. An automated moving software program identifies enterprise components of an enterprise software application. The program assigns an enterprise component tag to the identified enterprise component. The program then assigns an enterprise attribute tag to the identified enterprise component and searches an attribute relationship map for at least one cloud attribute related to the assigned enterprise attribute. On identification of such a cloud attribute, the cloud attribute is assigned to the identified enterprise component and the enterprise component is converted to cloud component by creating a new cloud component to replicate the functions of the enterprise component or assigning a cloud component tag to the enterprise component, provided the enterprise component is render-able on the cloud domain resources.
Abstract:
Methods and systems for moving or porting an enterprise software application from an enterprise environment to a cloud domain are disclosed. An automated moving software program identifies enterprise components of an enterprise software application. The program assigns an enterprise component tag to the identified enterprise component. The program then assigns an enterprise attribute tag to the identified enterprise component and searches an attribute relationship map for at least one cloud attribute related to the assigned enterprise attribute. On identification of such a cloud attribute, the cloud attribute is assigned to the identified enterprise component and the enterprise component is converted to cloud component by creating a new cloud component to replicate the functions of the enterprise component or assigning a cloud component tag to the enterprise component, provided the enterprise component is render-able on the cloud domain resources.
Abstract:
Methods and systems for moving or porting an enterprise software application from an enterprise environment to a cloud domain are disclosed. An automated moving software program identifies enterprise components of an enterprise software application. The program assigns an enterprise component tag to the identified enterprise component. The program then assigns an enterprise attribute tag to the identified enterprise component and searches an attribute relationship map for at least one cloud attribute related to the assigned enterprise attribute. On identification of such a cloud attribute, the cloud attribute is assigned to the identified enterprise component and the enterprise component is converted to cloud component by creating a new cloud component to replicate the functions of the enterprise component or assigning a cloud component tag to the enterprise component, provided the enterprise component is render-able on the cloud domain resources.