Abstract:
An electrolysis cell system includes a compact electrolysis cell comprising gas diffusion electrodes on each side of an aqueous electrolyte retaining matrix. A portion of the hydrogen gas produced by the cell has water added thereto and is recirculated through a thermal exchange portion of the cell to remove waste heat from the cell and create a temperature gradient thereacross. The amount of water introduced into the recirculating gas stream is controlled to maintain a predetermined temperature of the gas stream emerging from the thermal exchange portion of the cell. The stream leaves the thermal exchange portion of the cell and reenters the cell in the gas space adjacent one of the electrodes. In a preferred embodiment the water added is sprayed into the recirculating gas stream and the heat laden stream emerging from the thermal exchange portion of the cell passes through a condenser where water vapor in the stream is converted to liquid and where heat is removed from the stream; the water vapor partial pressure of the stream reentering the cell is controlled by keeping the temperature of the stream leaving the condenser within a certain temperature range.
Abstract:
PRESSURIZED FUEL CELL POWER PLANT WITH STEAM POWERED COMPRESSOR A fuel cell power plant for producing electricity uses pressurized air and fuel in the cells. A compressor is driven by a turbine operably connected thereto and provides compressed air to the cells. The turbine is driven by a working fluid in a hot, pressurized, vapor state. Energy to convert the working fluid into this state is waste energy produced by the power plant, such as stack waste heat. In one embodiment the power plant includes a steam reforming reactor and a reactor burner. Effluent gases from the anode side of the cell are used in the reactor burner. The working fluid is water and the turbine is driven by steam which is condensed to the liquid state after passing through the turbine. The liquid water is reconverted to steam by passing it into heat exchange relationship with the stack and it is then delivered again into the turbine. Part of the steam may be used in the steam reforming reactor. Preferably the effluent gases from the reactor burner and the effluent gases from the cathode side of the cells is delivered into an air turbine for generating electrical power in addition to the electrical power produced in the fuel cells.
Abstract:
An electrolysis cell system includes a compact electrolysis cell comprising gas diffusion electrodes on each side of an aqueous electrolyte retaining matrix. A portion of the hydrogen gas produced bu the cell has water added thereto and is recirculated through a thermal exchange portion of the cell to remove waste heat from the cell and create a temperature gradient thereacross. The amount of water introduced into a recirculating gas stream is controlled to maintain a predetermined temperature of the gas stream emerging from the thermal exchange portion of the cell. The stream leaves the thermal exchange portion of the cell and reenters the cell in the gas space adjacent one of the electrodes. In a preferred embodiment the water added is sprayed into the recirculating gas stream and the heat laden stream emerging from the thermal exchange portion of the cell passes through a condenser where water vapor in the stram is converted to liquid and where heat is removed from the stream; the water vapor partial pressure of the stream reentering the cell is controlled by keeping the temperature of the stream leaving the condenser within a certain temperature range.
Abstract:
PRESSURIZED FUEL CELL POWER PLANT A fuel cell power plant for producing electricity uses pressurized reactants in the cells. In one embodiment air is the oxidant and is compressed in a compressor driven by a turbine. The turbine is powered by waste energy produced in the power plant in the form of a hot pressurized gaseous medium. For example, effluent gases from both the anode and cathode sides of the cells is delivered into the turbine which in turn drives the compressor. In a preferred embodiment the effluent gases from the anode side of the cells is first delivered into a burner for providing heat to a steam reforming reactor, and the effluent gases from the burner are delivered into the turbine. In another embodiment, in addition to effluent gases delivered from the anode side of the cells into the burner, a portion of the effluent gases from the anode side of the cells is also delivered into the steam reforming reactor to provide steam for the fuel processing.
Abstract:
PRESSURIZED FUEL CELL POWER PLANT WITH SINGLE REACTANT GAS STREAM A fuel cell power plant for producing electricity uses pressurized air and fuel in the cells. The power plant includes an autothermal reactor for processing the fuel and a compressor driven by a turbine for compressing the air used by the fuel cells. Pressurized effluent gases from the cathode side of the cell and pressurized fuel is delivered into the autothermal reactor and from the reactor passes into the anode side of the cells. Effluent gases from the anode side of the cells is delivered into the turbine thereby driving the compressor. A burner is used to increase the temperature of the gases entering the turbine. The burner is run on air and unburned fuel in the effluent gases from the anode side of the cells.
Abstract:
PRESSURIZED FUEL CELL POWER PLANT A fuel cell power plant for producing electricity uses pressurized reactants in the cells. The air is compressed by compressor apparatus which is powered by waste energy produced by the power plant in the form of a hot pressurized gaseous medium, such as the exhaust gases from the cathode side of the cells. For example, the compressor apparatus may comprise a compressor and a turbine which are operably connected. The exhaust gases from the cathode side of the cell are delivered into the turbine which drives the compressor for compressing the air delivered to the cells.
Abstract:
PRESSURIZED FUEL CELL POWER PLANT WITH STEAM FLOW THROUGH THE CELLS A fuel cell power plant for producing electricity uses pressurized air and fuel in the cells. The air is compressed by compressor apparatus powered by waste energy in the form of hot pressurized gases including hot pressurized steam produced by the power plant. In one embodiment the compressor apparatus includes a turbine operably connected to a compressor, and hot pressurized gases produced by the power plant flow into the turbine thereby driving the compressor. The steam is generated by heat from the fuel cells, passes through the fuel cells adjacent the cathode electrode thereof, and is delivered into the turbine along with the other gases.