Abstract:
A gas turbine engine case structure includes inner and outer annular case portions radially spaced from one another to provide a flow path and circumferentially arranged airfoils extend radially and interconnect the inner and outer annular case portions. The airfoils include multiple vanes and multiple strut-vanes. Each vane has a vane leading edge. Each strut-vane includes a strut-vane leading edge. The vane leading edges and strut-vane leading edges are aligned in a common plane. The vanes include a first axial length and the strut-vanes include a second axial length that is at least double the first axial length.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides and extends in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a camber angle and span position that defines a curve with the camber angle having a positive slope from 0% span to 100% span.
Abstract:
A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between an axial stacking offset and span position that includes a curve with a negative slope from 90% span to 100% span. The negative slope leans forward relative to an engine axis.
Abstract:
A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides and extends in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a trailing edge angle and span position that defines a curve with a non-negative slope from 0% span to 20% span corresponding to a non-decreasing trailing edge angle.
Abstract:
A method of protecting a gas turbine engine according an exemplary aspect of the present disclosure includes, among other things, the steps of determining at least one flight condition of an aircraft and comparing the at least one flight condition to a programmed condition. The method further includes the steps of moving a plurality of inlet vanes of a low pressure compressor from a first position to a second position if the step of comparing the at least one flight condition to the programmed flight condition determines the programmed flight condition are met and deflecting any foreign objects with the plurality of inlet vanes.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a leading edge angle and span position that defines a curve with at least one of a decreasingly negative slope or a positive slope from 80% span to 100% span.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides and extends in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a stagger angle and span position that defines a curve with a stagger angle that is greater than 32° from 90% span to 100% span.
Abstract:
A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides extending in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between leading edge sweep angle and span position defined by a curve in which the leading edge sweep angle is positive at 0% span and crosses to a negative leading edge sweep angle at a span position less than 80% span. A negative sweep angle is in the forward direction, and a positive sweep angle is in the rearward direction.
Abstract:
A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a tangential stacking offset and span position that defines a curve that is non-linear.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides and extends in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a leading edge angle and span position that defines a curve with a leading edge angle of less than 40° at 100% span.