Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil that extends in a radial direction. The airfoil has a cooling passage arranged between the pressure and suction walls that extend toward a tip of the airfoil. The tip includes a pocket that separates the pressure and suction walls. Scarfed cooling holes fluidly connect the cooling passage to the pocket. The scarfed cooling holes include a portion that is recessed into a face of the suction wall and exposed to the pocket.
Abstract:
A support structure 10 for positioning a conduit 12 for various environments including that of an aircraft gas turbine engine is disclosed. Various construction details are developed for the support structure which facilitate assembly of portions of the support structure. The support structure includes a clamp assembly 18 and a clip 22 for orienting the clamp assembly in the proper direction. Orientation of the clamp assembly is facilitated by features of the clip. These features include a pair of tabs 32, 34 which face each other from either side of the clamp assembly. In one detailed embodiment, the clamp includes a laterally extending tab 92 to block the channel formed between the pair of longitudinally extending tabs.
Abstract:
A support structure 10 for positioning a conduit 12 for various environments including that of an aircraft gas turbine engine is disclosed. Various construction details are developed for the support structure which facilitate assembly of portions of the support structure. The support structure includes a clamp assembly 18 and a clip 22 for orienting the clamp assembly in the proper direction. Orientation of the clamp assembly is facilitated by features of the clip. These features include a pair of tabs 32, 34 which face each other from either side of the clamp assembly. In one detailed embodiment, the clamp includes a laterally extending tab 92 to block the channel formed between the pair of longitudinally extending tabs.
Abstract:
A turbine blade (20) has an undercut (33) beneath its platform (26) at a trailing edge (24). The undercut (33) has a complex shape to move thermal stress concentration away from the platform. A preferred undercut shape has a pair of curved fillets (32,36) at upper and lower extents of the undercut (33) with an intermediate straight section (34). The intermediate straight section is preferably parallel to a principle stress field of the platform (26).
Abstract:
A support structure 10 for positioning a conduit 12 for various environments including that of an aircraft gas turbine engine is disclosed. Various construction details are developed for the support structure which facilitate assembly of portions of the support structure. The support structure includes a clamp assembly 18 and a clip 22 for orienting the clamp assembly in the proper direction. Orientation of the clamp assembly is facilitated by features of the clip. These features include a pair of tabs 32, 34 which face each other from either side of the clamp assembly. In one detailed embodiment, the clamp includes a laterally extending tab 92 to block the channel formed between the pair of longitudinally extending tabs.
Abstract:
A support structure 10 for positioning a conduit 12 for various environments including that of an aircraft gas turbine engine is disclosed. Various construction details are developed for the support structure which facilitate assembly of portions of the support structure. The support structure includes a clamp assembly 18 and a clip 22 for orienting the clamp assembly in the proper direction. Orientation of the clamp assembly is facilitated by features of the clip. These features include a pair of tabs 32, 34 which face each other from either side of the clamp assembly. In one detailed embodiment, the clamp includes a laterally extending tab 92 to block the channel formed between the pair of longitudinally extending tabs.