Abstract:
The fuel processing system of the present invention supplies a flow of H2-r?ch reformate to a water gas shift membrane reactor, comprising a water gas shift reaction region and a permeate region, separated by an H2-separat?on membrane H2 formed over a catalyst in the reaction region selectively passes through the H2-separat?on membrane to the permeate region for delivery to a use point (such as the fuel cell of a fuel cell power plant) A sweep gas, preferably steam, removes the H2 from the permeate region The direction of sweep gas flow relative to the reformate flow is controlled for H2-separat?on performance and is used to determine the loading of the catalyst in the reaction region Coolant, thermal and/or pressure control subsystems of the fuel cell power plant may be integrated with the fuel processing system
Abstract:
The materials of adjoining porous metal substrate (12), oxide (14), and Pd-alloy membrane (16) layers of a composite, H2 - separation palladium membrane (10) have respective thermal expansion coefficients (TEC) which differ from one another so little as to resist failure by TEC mismatch from thermal cycling. TEC differences (20, 22) of less than 3 µm/ (m.k) between materials of adjacent layers are achieved by a composite system of a 446 stainless steel substrate, an oxide layer of 4 wt % yittria-zirconia, and a 77 wt% Pd-23 wt% Ag or 60 wt% Pd-40 wt% Cu, membrane, having TECs of 11, 11, and 13.9 µm/ (m.k), respectively. The Intermediate oxide layer comprises particles forming pores having an average pore sizeless than about 0.1 microns, and is less than 5 microns, and preferably less than about 3 microns, in thickness.
Abstract:
A process is provided for manufacturing a part or parts. This manufacturing process includes receiving a plurality of metal materials. The manufacturing process also includes solidifying the metal materials together using an additive manufacturing system to form at least a portion of the part, which comprises an alloy of the metal materials.
Abstract:
A feedstock for an additive manufacturing process includes a pre-ceramic polymer intermixed with a base material. A method of additive manufacturing includes melting and pyrolizing a feedstock containing metal and a pre-ceramic polymer. An article of manufacture includes an additive manufacturing component including a pyrolized feedstock.