Abstract:
An airfoil array is disclosed. The airfoil array may include an endwall, and a plurality of airfoils radially projecting from the endwall. Each airfoil may have a first side and an opposite second side extending axially in chord between a leading edge and a trailing edge. The airfoils may be circumferentially spaced apart on the endwall thereby defining a plurality of flow passages between adjacent airfoils. The airfoil array may further include a convex profiled region extending from the endwall adjacent to the first side of at least one of said plurality of airfoils near the leading edge of the at least one of said plurality of airfoils, and a concave profiled region in the endwall and extending across said at least one of said plurality of flow passages.
Abstract:
A gas turbine engine component includes an outer diameter endwall, an inner diameter endwall spaced radially inward of the outer diameter endwall, and at least one body supported between the outer and inner endwalls for rotation about an axis. The body includes an outer diameter surface spaced from the outer diameter endwall by a first gap and an inner diameter surface spaced from the inner diameter endwall by a second gap. The outer and inner diameter surfaces and the outer and inner diameter endwalls are configured such that the first and second gaps remain generally constant in size as the body rotates about the axis.
Abstract:
The present disclosure relates generally to a variable area turbine vane row assembly. In an embodiment, the variable area turbine vane row assembly includes rotatable vanes that are circumferentially biased and/or axially biased with respect to adjacent fixed vanes. In another embodiment, the variable area turbine vane row assembly includes multiple rotatable vanes positioned between adjacent fixed vanes, which may optionally be circumferentially biased and/or axially biased with respect to each other as well as to the adjacent fixed vanes.
Abstract:
An airfoil array is disclosed. The airfoil array may include an endwall, and a plurality of airfoils radially projecting from the endwall. Each airfoil may have a first side and an opposite second side extending axially in chord between a leading edge and a trailing edge. The airfoils may be circumferentially spaced apart on the endwall thereby defining a plurality of flow passages between adjacent airfoils. The airfoil array may further include a convex profiled region extending from the endwall near the leading edge of at least one of said plurality of airfoils, and a concave profiled region in the endwall near a middle of at least one of said plurality of flow passages.
Abstract:
An airfoil array is disclosed. The airfoil array may include an endwall, and a plurality of airfoils radially projecting from the endwall. Each airfoil may have a first side and an opposite second side extending axially in chord between a leading edge and a trailing edge. The airfoil array may further include a convex profiled region extending from the endwall adjacent the first side of at least one of said plurality of airfoils and near the leading edge of the at least one of said plurality of airfoils. The airfoil array may further include a concave profiled region in the endwall adjacent the first side of said at least one of said plurality of airfoils and aft of the convex profiled region.
Abstract:
A turbine stator vane assembly for a gas turbine engine is disclosed and includes an airfoil rotatable about an axis transverse to an engine longitudinal axis. The airfoil includes outer walls defining an inner chamber between a pressure side and a suction side of the airfoil. At least one spindle supports rotation of the airfoil and includes a feed opening for communicating cooling air into the inner chamber. An inlet defines a passage between the feed opening and the inner chamber and includes a protrusion of the outer wall on at least one of the pressure side and suction side of the airfoil.