Abstract:
PROBLEM TO BE SOLVED: To shorten the low shaft of an engine while increasing the output density of the engine.SOLUTION: A gas turbine engine 20 includes a low shaft 40, a counter-rotating low-pressure compressor 60, and a counter-rotating low-pressure turbine 62. The counter-rotating low-pressure turbine 62 includes inside blade sets 120 which are connected to the low shaft 40 via a gear device 116, and an outside blade set 122 which is inserted between the inside blade sets 120. The outside blade set 122 is fixed to an outside rotor 126; a front end of the outside rotor 126 is supported on a central turbine frame 134 by a bearing 150; and a rear end of the outside rotor 126 is supported on the low shaft 40 by the bearing 152. In addition, the gear device 116 comprises a sun gear 140, a splitter gear 142 which is meshed with the sun gear 140, and a ring gear 148 which is meshed with the splitter gear 142.
Abstract:
A gas turbine engine includes a shaft defining an axis of rotation. An outer turbine rotor directly drives the shaft and includes an outer set of blades. An inner turbine rotor has an inner set of blades interspersed with the outer set of blades. The inner turbine rotor is configured to rotate in an opposite direction about the axis of rotation from the outer turbine rotor. A splitter gear system couples the inner turbine rotor to the shaft and is configured to rotate the inner set of blades at a faster speed than the outer set of blades.
Abstract:
A gas turbine engine includes a shaft defining an axis of rotation. An outer turbine rotor directly drives the shaft and includes an outer set of blades. An inner turbine rotor has an inner set of blades interspersed with the outer set of blades. The inner turbine rotor is configured to rotate in an opposite direction about the axis of rotation from the outer turbine rotor. A splitter gear system couples the inner turbine rotor to the shaft and is configured to rotate the inner set of blades at a faster speed than the outer set of blades.
Abstract:
A gas turbine engine includes a shaft defining an axis of rotation. An outer turbine rotor directly drives the shaft and includes an outer set of blades. An inner turbine rotor has an inner set of blades interspersed with the outer set of blades. The inner turbine rotor is configured to rotate in an opposite direction about the axis of rotation from the outer turbine rotor. A splitter gear system couples the inner turbine rotor to the shaft and is configured to rotate the inner set of blades at a faster speed than the outer set of blades.
Abstract:
Motor de turbina a gás. É descrito um motor de turbina a gás que inclui um eixo que define um eixo geométrico de rotação. Um rotor da turbina externa aciona diretamente o eixo e inclui um conjunto externo de pás. Um rotor da turbina interna tem um conjunto interno de pás entremeado com o conjunto externo de pás. O rotor da turbina interna é configurado para girar em uma direção oposta em torno do eixo geométrico de rotação em relação ao rotor da turbina externa. Um sistema de engrenagem divisora acopla o rotor da turbina interna no eixo e é configurado para girar o conjunto interno de pás a uma maior velocidade do que o conjunto esterno de pás
Abstract:
A gas turbine engine includes a shaft defining an axis of rotation. An outer turbine rotor directly drives the shaft and includes an outer set of blades. An inner turbine rotor has an inner set of blades interspersed with the outer set of blades. The inner turbine rotor is configured to rotate in an opposite direction about the axis of rotation from the outer turbine rotor. A splitter gear system couples the inner turbine rotor to the shaft and is configured to rotate the inner set of blades at a faster speed than the outer set of blades.
Abstract:
A gas turbine engine includes first and second stages having a rotational axis. A mid turbine frame is arranged axially between the first and second stages. The mid turbine frame includes a circumferential array of airfoils, and the airfoils each have a curvature provided equidistantly between pressure and suction sides. The airfoils extend from a leading edge to a trailing edge at a midspan plane along the airfoil. An angle is defined between first and second lines respectively tangent to the intersection of the plane and the curvature at airfoil leading and trailing edges. The angle is equal to or greater than about 10°, for example. In one example, an airfoil aspect ratio is less than 1.5.
Abstract:
A gas turbine engine includes a shaft defining an axis of rotation. An outer turbine rotor directly drives the shaft and includes an outer set of blades. An inner turbine rotor has an inner set of blades interspersed with the outer set of blades. The inner turbine rotor is configured to rotate in an opposite direction about the axis of rotation from the outer turbine rotor. A splitter gear system couples the inner turbine rotor to the shaft and is configured to rotate the inner set of blades at a faster speed than the outer set of blades.