Abstract:
A method for removing a predetermined amount of material from the inner surface of a circular article which deviates from a true circular configuration. The outer surface of the article is touch probed to determine its true location in space, and the data are stored in a computer memory. These data are then compared to engineering design data to establish the location of the surface to which material removal is desired. A control computer compares the measured data with the design data, and sends commands to the machine control system, causing the machine to remove the excess material down to the desired dimension. Any deviations from circular are compensated for by moving the article radially relative to the cutting tool as the article moves circumferentially relative to the cutting tool.
Abstract:
A method for removing a predetermined amount of material from the inner surface of a circular article which deviates from a true circular configuration. The outer surface of the article is touch probed to determine its true location in space, and the data are stored in a computer memory. These data are then compared to engineering design data to establish the location of the surface to which material removal is desired. A control computer compares the measured data with the design data, and sends commands to the machine control system, causing the machine to remove the excess material down to the desired dimension. Any deviations from circular are compensated for by moving the article radially relative to the cutting tool as the article moves circumferentially relative to the cutting tool.
Abstract:
A method of removing at least a part of a thermal sprayed wear resistant coating on a gas turbine engine part includes grinding the thermal sprayed wear resistant coating with a superabrasive grinding wheel.
Abstract:
A method for removing a predetermined amount of material from the inner surface of a circular article which deviates from a true circular configuration. The outer surface of the article is touch probed to determine its true location in space, and the data are stored in a computer memory. These data are then compared to engineering design data to establish the location of the surface to which material removal is desired. A control computer compares the measured data with the design data, and sends commands to the machine control system, causing the machine to remove the excess material down to the desired dimension. Any deviations from circular are compensated for by moving the article radially relative to the cutting tool as the article moves circumferentially relative to the cutting tool.
Abstract:
Apparatus for removing at least a part of a thermal sprayed wear resistant coating on a gas turbine engine part includes a a superabrasive grinding wheel (22) which includes a superabrasive material comprising at least one of cubic boron nitride and diamond. The apparatus further includes a rotating device capable of rotating the superabrasive grinding wheel at a rate of at least 3,000 revolutions per minute and a supporting device (26) configured to support the gas turbine engine part (10) and creep feed the gas turbine engine part (10) into contact with the super abrasive grinding wheel (22) so that the super abrasive grinding wheel (22) is configured to remove the thermal sprayed wear resistant coating (12) at a peripheral speed of about 8,000 to about 10,000 surface feet per minute (2,440 to 3,048 meters per minute).
Abstract:
A method for removing a predetermined amount of material from the inner surface (16, 18, 20, 22) of a circular article (10) which deviates from a true circular configuration. The outer surface (32) of the article (10) is touch probed to determine its true location in space, data are then compared to engineering design data to establish the location of the surface (16, 18, 20, 22) to which material removal is desired. A control computer (70) sends commands to the machine control system, causing the machine to remove the excess material down to the desired dimension. Any deviations from circular are compensated for by moving the article (10) radially relative to the cutting tool as the article (10) moves circumferentially relative to the cutting tool.