Abstract:
PROBLEM TO BE SOLVED: To reduce the time and costs required for maintaining a specific component of a gas turbine engine (20).SOLUTION: The gas turbine engine (20) includes a central body support (62) that provides an inner annular wall for a core flow path. The central body support (62) includes first splines. A geared architecture (48) interconnects a spool and a fan rotatable about an axis. A flex support (68) interconnects the geared architecture (48) to the central body support (62). The flex support (68) includes second splines that intermesh with the first splines for transferring torque therebetween.
Abstract:
A disclosed gear assembly support for a gas turbine engine includes a first portion configured for attachment to a case of the gas turbine engine and a second portion configured for supporting a gear assembly. The support further includes a snap portion defining a fit within the case. The snap portion includes a tunable feature for adjusting a fit within the case. A torque reacting portion of the support transfers torque from the second portion to the first portion separate from the snap portion and include separately tunable features fore adjusting the snap fit independent of the torque transfer portions.
Abstract:
A fan drive gear system for a gas turbine engine includes a carrier that supports circumferentially arranged gears. A torque frame has circumferentially arranged fingers with each finger including a bore having a bore axis. A bushing is arranged in each bore and provides an aperture. At least one bushing has a bushing axis offset from the bore axis. A pin is disposed in the aperture and secures the carrier to the torque frame.
Abstract:
A gas turbine engine includes a central body support that provides an inner annular wall for a core flow path. The central body support includes first splines. A geared architecture interconnects a spool and a fan rotatable about an axis. A flex support interconnects the geared architecture to the central body support. The flex support includes second splines that intermesh with the first splines for transferring torque there between.
Abstract:
An ongoing issue for gas turbine engines is the ease and speed at which certain components in such engines can be served. Engine architectures may be designed to facilitate access to internal engine components. One such engine architecture may include a central body support that provides an inner annular wall for a core flow path. The central body support includes first splines. A geared architecture interconnects a spool and a fan rotatable about an axis. A flex support interconnects the geared architecture to the central body support. The flex support includes second splines that intermesh with the first splines for transferring torque there between.
Abstract:
A disclosed gear assembly support for a gas turbine engine includes a first portion configured for attachment to a case of the gas turbine engine and a second portion configured for supporting a gear assembly. The support further includes a snap portion defining a fit within the case. The snap portion includes a tunable feature for adjusting a fit within the case. A torque reacting portion of the support transfers torque from the second portion to the first portion separate from the snap portion and include separately tunable features for adjusting the snap fit independent of the torque transfer portions.
Abstract:
A gear assembly support for a gas turbine engine includes a first portion engageable to a case of the gas turbine engine and a second portion configured for supporting a gear assembly. The support includes a torque reacting portion for transferring torque from the second portion to the first portion, a forward flange disposed forward of the torque reacting portion, the forward flange defining a first interface to the case and an aft flange disposed aft of the torque reacting portion, the aft flange defining a second interface to the case.