Helicopter active noise control system

    公开(公告)号:AU663194B2

    公开(公告)日:1995-09-28

    申请号:AU4102993

    申请日:1993-04-14

    Abstract: An active noise control (ANC) system for a helicopter that is operative to effectively nullify one or more high frequency vibrations emanating from the main transmission gearbox thereof at the gearbox/airframe interface, thereby significantly reducing the interior noise levels of the helicopter, that is design optimized to minimize the number of actuators required, and that is design optimized to minimize contamination forces arising from operation of the system actuators. The ANC system includes modified transmission beams that are mechanically stiffened to function as rigid bodies with respect to the one or more of the high frequency vibrations, a plurality of actuators disposed in combination with the modified transmission beams, a plurality of sensors disposed in combination with the modified transmission beams in a collinear, spaced apart functional correlation with respective actuators, and controllers interconnecting individual actuators with respective functionally correlated sensors.

    Ancillary aerodynamic structures for an unmanned aerial vehicle having ducted, coaxial counter-rotating rotors

    公开(公告)号:AU673608B2

    公开(公告)日:1996-11-14

    申请号:AU6777894

    申请日:1994-04-29

    Abstract: An unmanned aerial vehicle (UAV) having a toroidal fuselage and a rotor assembly including counter-rotating rotors coaxially mounted with respect to the toroidal fuselage incorporates ancillary aerodynamic structures aerodynamically configured and mounted in combination with the toroidal fuselage to provide a nose-down pitching moment to counteract the nose-up pitching moment generated by airflow over the toroidal fuselage during forward translational flight of the UAV. The ancillary aerodynamic structures have a cambered airfoil profile to provide high lifting forces. The ancillary aerodynamic structures may have centers of lift located significantly aft of the quarter-chord line of the airfoil, and are symmetrically mounted in combination with the lateral sides of the toroidal fuselage so that the centers of lift are located aftwardly of the fuselage axis of the toroidal fuselage in forward translational flight modes such that the ancillary aerodynamic structures generate a nose-down pitching moment to counteract the nose-up pitching moment due to airflow over the toroidal fuselage in forward translational flight. In a first embodiment, the ancillary aerodynamic structures are fixedly mounted in combination with the toroidal fuselage at a predetermined angle of incidence. In a second embodiment, the ancillary aerodynamic structures are rotatably mounted in combination with the toroidal fuselage to provide variable incidence ancillary aerodynamic structures for the UAV.

    HELICOPTER ACTIVE NOISE CONTROL SYSTEM

    公开(公告)号:CA2132198A1

    公开(公告)日:1993-10-28

    申请号:CA2132198

    申请日:1993-04-14

    Abstract: An active noise control (ANC) system for a helicopter that is operative to effectively nullify one or more high frequency vibrations emanating from the main transmission gearbox thereof at the gearbox/airframe interface, thereby significantly reducing the interior noise levels of the helicopter, that is design optimized to minimize the number of actuators required, and that is design optimized to minimize contamination forces arising from operation of the system actuators. The ANC system includes modified transmission beams that are mechanically stiffened to function as rigid bodies with respect to the one or more of the high frequency vibrations, a plurality of actuators disposed in combination with the modified transmission beams, a plurality of sensors disposed in combination with the modified transmission beams in a collinear, spaced apart functional correlation with respective actuators, and controllers interconnecting individual actuators with respective functionally correlated sensors.

    5.
    发明专利
    未知

    公开(公告)号:ES2095645T3

    公开(公告)日:1997-02-16

    申请号:ES93910595

    申请日:1993-04-14

    Abstract: An active noise control (ANC) system for a helicopter that is operative to effectively nullify one or more high frequency vibrations emanating from the main transmission gearbox thereof at the gearbox/airframe interface, thereby significantly reducing the interior noise levels of the helicopter, that is design optimized to minimize the number of actuators required, and that is design optimized to minimize contamination forces arising from operation of the system actuators. The ANC system includes modified transmission beams that are mechanically stiffened to function as rigid bodies with respect to the one or more of the high frequency vibrations, a plurality of actuators disposed in combination with the modified transmission beams, a plurality of sensors disposed in combination with the modified transmission beams in a collinear, spaced apart functional correlation with respective actuators, and controllers interconnecting individual actuators with respective functionally correlated sensors.

    6.
    发明专利
    未知

    公开(公告)号:DE69004730T2

    公开(公告)日:1994-03-31

    申请号:DE69004730

    申请日:1990-04-05

    Abstract: A helicopter (10) is roll vibration resistant having cantilever spring (40) supported masses (42) located at extreme outboard locations. The spring portion (40) extends substantially horizontally and is rigidly secured to rigid structure (28). This vibration absorber (34) is tuned to the forced frequency established by the normal rotor (14) RPM times the number of rotor blades (16).

    Ancillary aerodynamic structures for an unmanned aerial vehicle having ducted, coaxial counter-rotating rotors

    公开(公告)号:AU6777894A

    公开(公告)日:1994-12-12

    申请号:AU6777894

    申请日:1994-04-29

    Abstract: An unmanned aerial vehicle (UAV) having a toroidal fuselage and a rotor assembly including counter-rotating rotors coaxially mounted with respect to the toroidal fuselage incorporates ancillary aerodynamic structures aerodynamically configured and mounted in combination with the toroidal fuselage to provide a nose-down pitching moment to counteract the nose-up pitching moment generated by airflow over the toroidal fuselage during forward translational flight of the UAV. The ancillary aerodynamic structures have a cambered airfoil profile to provide high lifting forces. The ancillary aerodynamic structures may have centers of lift located significantly aft of the quarter-chord line of the airfoil, and are symmetrically mounted in combination with the lateral sides of the toroidal fuselage so that the centers of lift are located aftwardly of the fuselage axis of the toroidal fuselage in forward translational flight modes such that the ancillary aerodynamic structures generate a nose-down pitching moment to counteract the nose-up pitching moment due to airflow over the toroidal fuselage in forward translational flight. In a first embodiment, the ancillary aerodynamic structures are fixedly mounted in combination with the toroidal fuselage at a predetermined angle of incidence. In a second embodiment, the ancillary aerodynamic structures are rotatably mounted in combination with the toroidal fuselage to provide variable incidence ancillary aerodynamic structures for the UAV.

    ANCILLARY AERODYNAMIC STRUCTURES FOR AN UNMANNED AERIAL VEHICLE HAVING DUCTED, COAXIAL COUNTER-ROTATING ROTORS

    公开(公告)号:CA2161113A1

    公开(公告)日:1994-11-24

    申请号:CA2161113

    申请日:1994-04-29

    Abstract: An unmanned aerial vehicle (UAV) (100) having a toroidal fuselage (120) and a rotor assembly (170) including counter-rotating rotors coaxially mounted with respect to the toroidal fuselage incorporates ancillary aerodynamic structures (18) having a cambered airfoil profile to provide a nose-down pitching moment to counteract the nose-up pitching moment generated by airflow over the toroidal fuselage during forward translational flight of the UAV The ancillary aerodynamic structures are symmetrically mounted in combination with the lateral sides of the toroidal fuselage so that the centers of lift are located aftwardly of the fuselage axis of the toroidal fuselage in forward translational flight modes. In a first embodiment, the ancillary aerodynamic structures (18) are fixedly mounted in combination with the toroidal fuselage (10) at a predetermined angle of incidence. In a second embodiment, the ancillary aerodynamic structures (19) are rotatably mounted in combination with the toroidal fuselage (10') to provide variable incidence ancillary aerodynamic structures for the UAV.

    9.
    发明专利
    未知

    公开(公告)号:DE69004730D1

    公开(公告)日:1994-01-05

    申请号:DE69004730

    申请日:1990-04-05

    Abstract: A helicopter (10) is roll vibration resistant having cantilever spring (40) supported masses (42) located at extreme outboard locations. The spring portion (40) extends substantially horizontally and is rigidly secured to rigid structure (28). This vibration absorber (34) is tuned to the forced frequency established by the normal rotor (14) RPM times the number of rotor blades (16).

    Helicopter active noise control system

    公开(公告)号:AU4102993A

    公开(公告)日:1993-11-18

    申请号:AU4102993

    申请日:1993-04-14

    Abstract: An active noise control (ANC) system for a helicopter that is operative to effectively nullify one or more high frequency vibrations emanating from the main transmission gearbox thereof at the gearbox/airframe interface, thereby significantly reducing the interior noise levels of the helicopter, that is design optimized to minimize the number of actuators required, and that is design optimized to minimize contamination forces arising from operation of the system actuators. The ANC system includes modified transmission beams that are mechanically stiffened to function as rigid bodies with respect to the one or more of the high frequency vibrations, a plurality of actuators disposed in combination with the modified transmission beams, a plurality of sensors disposed in combination with the modified transmission beams in a collinear, spaced apart functional correlation with respective actuators, and controllers interconnecting individual actuators with respective functionally correlated sensors.

Patent Agency Ranking