Abstract:
The present invention relates to an overlay coating which has improved strength properties. The overlay coating comprises a deposited layer of MCrAlY material containing discrete nitride particles therein. The nitride particles are present in a volume fraction in the range of 0.1% to 15.0% and have a particle size in the range of from 0.1 microns to 10.0 microns. The coating may also have oxide particles dispersed therein.
Abstract:
The present invention relates to an overlay coating which has improved strength properties. The overlay coating comprises a deposited layer of MCrAlY material containing discrete nitride particles therein. The nitride particles are present in a volume fraction in the range of 0.1% to 15.0% and have a particle size in the range of from 0.1 microns to 10.0 microns. The coating may also have oxide particles dispersed therein.
Abstract:
The present invention relates to an overlay coating which has improved strength properties. The overlay coating comprises a deposited layer of MCrAlY material containing discrete nitride particles therein. The nitride particles are present in a volume fraction in the range of 0.1% to 15.0% and have a particle size in the range of from 0.1 microns to 10.0 microns. The coating may also have oxide particles dispersed therein.
Abstract:
The present invention relates to an overlay coating which has improved strength properties. The overlay coating comprises a deposited layer of MCrAlY material containing discrete nitride particles therein. The nitride particles are present in a volume fraction in the range of 0.1% to 15.0% and have a particle size in the range of from 0.1 microns to 10.0 microns. The coating may also have oxide particles dispersed therein.
Abstract:
A coated article includes a substrate and an MCrAlY coating supported on the substrate. The M includes at least one of nickel, cobalt, and iron, Cr is chromium, Al is aluminum, and Y is yttrium. The composition of the MCrAlY coating varies in an amount of at least one of Cr, Al, and Y by location on the substrate with respect to localized property requirements. In one example, the coated article is an article of a gas turbine engine.
Abstract:
A coated article includes a substrate and a continuous ceramic-based coating supported on the substrate. The ceramic-based coating varies in at least one of composition and microstructure by location on the substrate and with respect to localized property requirements. In one example, the coated article is an article of a gas turbine engine.
Abstract:
A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.