Abstract:
An assembly of a bulkhead (48) and fuel nozzle guide (62) for a fuel nozzle (46) disposed in a combustion chamber (24) is disclosed. Various construction details which provide for convection cooling of the various components of the assembly are developed. In one detailed embodiment, the nozzle fuel guide (62) is spaced from the bulkhead (48) to form an annular gap (G1) which is divided by a heat shield (72) into annular orifices (108, 112) for supplying to cooling air passages (126, 128) bounded by the heat shield (72).
Abstract:
An assembly of a bulkhead (48) and fuel nozzle guide (62) for a fuel nozzle (46) disposed in a combustion chamber (24) is disclosed. Various construction details which provide for convection cooling of the various components of the assembly are developed. In one detailed embodiment, the nozzle fuel guide (62) is spaced from the bulkhead (48) to form an annular gap (G1) which is divided by a heat shield (72) into annular orifices (108, 112) for supplying to cooling air passages (126, 128) bounded by the heat shield (72).
Abstract:
An assembly of a bulkhead (48) and fuel nozzle guide (62) for a fuel nozzle (46) disposed in a combustion chamber (24) is disclosed. Various construction details which provide for convection cooling of the various components of the assembly are developed. In one detailed embodiment, the nozzle fuel guide (62) is spaced from the bulkhead (48) to form an annular gap (G1) which is divided by a heat shield (72) into annular orifices (108, 112) for supplying to cooling air passages (126, 128) bounded by the heat shield (72).