Abstract:
Woven fiber ballistic fabric (22) of multiple layers surrounds an isogrid support structure (20). A cuff portion (38) has shorter warp threads than the major portion (3) and also is impregnated with epoxy resin. A diameter restrains the fabric from aft movement during a blade ejection event.
Abstract:
Isogrid structure (20) forms case (14) surrounding the fan blades. In the zones where blade penetration is anticipated, the ribs (38) of the lattice do not run circumferentially. The skin segments (48) are of different thickness in different zones, but do not differ more than 30 % from the thickness of an adjoining segment.
Abstract:
A method and apparatus which facilitate separation of a gas turbofan powerplant into modules for shipping, maintenance and repair is disclosed. Various construction details are developed which provide means for mounting a fan cowling to an engine core in a manner which permits transference of operational loads from the fan cowling to the engine core and separation of the fan cowling from the engine core. In one embodiment, a fan cowling (46) is attached to an engine core (18) by a plurality of radially extending through struts (64). The through struts include a bolted joint (72) which permits separation of a powerplant (12) into a first module and a second module. In another embodiment, a joint includes a tongue on one strut portion and a groove on the other strut portion. A method for varying between an assembled and disassembled condition is comprised of manipulating the joints between an engaged and disengaged position and axially moving the separate modules along a longitudinal centerline (14).
Abstract:
Woven fiber ballistic fabric (22) of multiple layers surrounds an isogrid support structure (20). A cuff portion (38) has shorter warp threads than the major portion (3) and also is impregnated with epoxy resin. A diameter restrains the fabric from aft movement during a blade ejection event.
Abstract:
Woven fiber ballistic fabric (22) of multiple layers surrounds an isogrid support structure (20). A cuff portion (38) has shorter warp threads than the major portion (3) and also is impregnated with epoxy resin. A diameter restrains the fabric from aft movement during a blade ejection event.
Abstract:
A method and apparatus which facilitate separation of a gas turbofan powerplant into modules for shipping, maintenance and repair is disclosed. Various construction details are developed which provide means for mounting a fan cowling to an engine core in a manner which permits transference of operational loads from the fan cowling to the engine core and separation of the fan cowling from the engine core. In one embodiment, a fan cowling (46) is attached to an engine core (18) by a plurality of radially extending through struts (64). The through struts include a bolted joint (72) which permits separation of a powerplant (12) into a first module and a second module. In another embodiment, a joint includes a tongue on one strut portion and a groove on the other strut portion. A method for varying between an assembled and disassembled condition is comprised of manipulating the joints between an engaged and disengaged position and axially moving the separate modules along a longitudinal centerline (14).
Abstract:
Isogrid structure (20) forms case (14) surrounding the fan blades. In the zones where blade penetration is anticipated, the ribs (38) of the lattice do not run circumferentially. The skin segments (48) are of different thickness in different zones, but do not differ more than 30 % from the thickness of an adjoining segment.
Abstract:
Isogrid structure (20) forms case (14) surrounding the fan blades. In the zones where blade penetration is anticipated, the ribs (38) of the lattice do not run circumferentially. The skin segments (48) are of different thickness in different zones, but do not differ more than 30 % from the thickness of an adjoining segment.