Abstract:
Conduits for guiding the motion of an inner diameter shroud of a low pressure compressor of a gas turbine engine are disclosed. The inner diameter shroud has at least three slots formed in one or more radially inwardly extending flanges. Each of the conduits are configured to assemble with a respective one of the at least three slots. Each conduit comprises a bushing having a first panel, and the first panel is capable of being inserted in a respective one of the slots of the inner diameter shroud. The conduit further comprises a bracket capable of being attached to a bearing support of a fan intermediate case of the gas turbine engine. The bushing is capable of being attached to the bracket. A contact between the first panel and the at least one slot of the inner diameter shroud restricts a circumferential rotation of the inner diameter shroud with respect to a central axis of the gas turbine engine when the first panel is inserted in the at least one slot, but allows a radial motion of the inner diameter shroud with respect to the central axis.
Abstract:
A retention member for a component of a gas turbine engine and methods of using the same are provided. The retention member includes an annular body having a first side, a second side, a first end, and a second end, a retention element configured at the first end of the annular body and on the first side, the retention element configured to releasably engage with an interior surface of a case of the gas turbine engine, and a support element configured at the second end of the annular body, the support element configured to engage with a surface of at least one of a blade outer air seal or a blade outer air seal support.
Abstract:
A seal assembly includes a blade outer air seal, a downstream vane, and a pressure wall, according to various embodiments. The blade outer air seal may include a radially outer surface and the downstream vane may be coupled to the blade outer air seal via a fluid sealing engagement. The pressure wall may be coupled to the blade outer air seal and may define a metering orifice. In various embodiments, the metering orifice of the pressure wall is configured to meter air flow from a first plenum upstream of the pressure wall to a second plenum downstream of the pressure wall. In various embodiments, at least a preponderance of the radially outer surface of the blade outer air seal at least partially defines the first plenum and the fluid sealing engagement at least partially defines the second plenum.
Abstract:
A bearing assembly for a gas turbine engine includes, among other things, a bearing housing extending along an axis to define a bearing compartment, a lubricant seal assembly adjacent to the bearing housing to bound the bearing compartment, an air seal assembly defining a vent cavity along the bearing housing, wherein a mixing cavity is defined between the lubricant seal assembly and the air seal assembly, and wherein the bearing housing defines an airflow supply passage, an airflow vent passage and a scupper passage having respective fluid ports at different circumferential positions relative to the axis, the fluid port of the airflow vent passage fluidly coupled to the vent cavity, and the fluid ports of the airflow supply and scupper passages fluidly coupled to the mixing cavity. A method of sealing for a gas turbine engine is also disclosed.
Abstract:
A bearing assembly for a gas turbine engine includes, among other things, a bearing housing extending along an axis to define a bearing compartment, a lubricant seal assembly adjacent to the bearing housing to bound the bearing compartment, an air seal assembly defining a vent cavity along the bearing housing, wherein a mixing cavity is defined between the lubricant seal assembly and the air seal assembly, and wherein the bearing housing defines an airflow supply passage, an airflow vent passage and a scupper passage having respective fluid ports at different circumferential positions relative to the axis, the fluid port of the airflow vent passage fluidly coupled to the vent cavity, and the fluid ports of the airflow supply and scupper passages fluidly coupled to the mixing cavity. A method of sealing for a gas turbine engine is also disclosed.
Abstract:
A seal assembly includes a blade outer air seal, a downstream vane, and a pressure wall, according to various embodiments. The blade outer air seal may include a radially outer surface and the downstream vane may be coupled to the blade outer air seal via a fluid sealing engagement. The pressure wall may be coupled to the blade outer air seal and may define a metering orifice. In various embodiments, the metering orifice of the pressure wall is configured to meter air flow from a first plenum upstream of the pressure wall to a second plenum downstream of the pressure wall. In various embodiments, at least a preponderance of the radially outer surface of the blade outer air seal at least partially defines the first plenum and the fluid sealing engagement at least partially defines the second plenum.
Abstract:
A case assembly is provided. The case assembly comprises a first flange and a spot face in the first flange. The spot face has a D-shaped perimeter. A jacking insert is disposed in the spot face and has a D-shaped geometry. A threaded cylinder extends from the jacking insert into the first flange. A jacking insert is also provided. The jacking insert comprises a flat portion having a D-shaped geometry and a cylindrical portion having an internal thread configured to interface with a bolt.
Abstract:
Conduits for guiding the motion of an inner diameter shroud of a low pressure compressor of a gas turbine engine are disclosed. The inner diameter shroud has at least three slots formed in one or more radially inwardly extending flanges. Each of the conduits are configured to assemble with a respective one of the at least three slots. Each conduit comprises a bushing having a first panel, and the first panel is capable of being inserted in a respective one of the slots of the inner diameter shroud. The conduit further comprises a bracket capable of being attached to a bearing support of a fan intermediate case of the gas turbine engine. The bushing is capable of being attached to the bracket. A contact between the first panel and the at least one slot of the inner diameter shroud restricts a circumferential rotation of the inner diameter shroud with respect to a central axis of the gas turbine engine when the first panel is inserted in the at least one slot, but allows a radial motion of the inner diameter shroud with respect to the central axis.
Abstract:
A case assembly is provided. The case assembly comprises a first flange and a spot face in the first flange. The spot face has a D-shaped perimeter. A jacking insert is disposed in the spot face and has a D-shaped geometry. A threaded cylinder extends from the jacking insert into the first flange. A jacking insert is also provided. The jacking insert comprises a flat portion having a D-shaped geometry and a cylindrical portion having an internal thread configured to interface with a bolt.
Abstract:
A case assembly is provided. The case assembly comprises a first flange and a spot face in the first flange. The spot face has a D-shaped perimeter. A jacking insert is disposed in the spot face and has a D-shaped geometry. A threaded cylinder extends from the jacking insert into the first flange. A jacking insert is also provided. The jacking insert comprises a flat portion having a D-shaped geometry and a cylindrical portion having an internal thread configured to interface with a bolt.