Abstract:
A thermal barrier coating is applied to a turbine engine component having a substrate. The thermal barrier coating has a first layer which has a strain tolerant columnar microstructure at an interface with the substrate for spallation resistance and a second layer which is porous conduction and radiation thermally resistant at an outer surface of the thermal barrier coating.
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.
Abstract:
A system for depositing coating on a workpiece includes a deposition chamber within which is formed a vortex to at least partially surround a workpiece therein.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.
Abstract:
A coated component with a coating applied by Electron Beam Physical Vapor Deposition (EB-PVD) includes at least one Non Line of Sight (NLOS) area and at least one Line of Sight (LOS) area, a coating on the workpiece defines a ratio greater than about 10% NLOS/LOS.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.