Abstract:
A compliant seal assembly that may be for an MTF of a gas turbine engine includes a housing orientated about an axis with a circumferentially extending groove in the housing opened radially outward. An annular carrier of the assembly is constructed and arranged to move radially within the groove, and includes a circumferentially extending channel that is opened radially outward for receipt of a piston ring that may seal to a surrounding cylindrical wall. In operation, the carrier moves radially with respect to the housing to compensate for radial displacement between the housing and the wall, and the piston ring moves axially along the wall to compensate for axial displacement between the housing and the wall.
Abstract:
A cooling structure for a gas turbine engine comprises a gas turbine engine structure defining a cooling cavity. A cooling component is configured to direct cooling flow in a desired direction into the cooling cavity. A bracket supports the cooling component and has an attachment interface to fix the bracket to the gas turbine engine structure. A first orientation feature associated with the bracket. A second orientation feature is associated with the gas turbine engine structure. The first and second orientation features cooperate with each other to ensure that the cooling component is only installed in one orientation relative to the gas turbine engine structure. A gas turbine engine and a method of installing a cooling structure are also disclosed.
Abstract:
An interface within a gas turbine engine includes a sealing surface defined by a portion of a vane platform. A seal is in contact with said sealing surface. A barrier is transverse to the sealing surface.
Abstract:
A heat shield assembly for an engine case of a gas turbine engine may include a heat shield and a support lock. The heat shield may have an annular shape. The heat shield may define an aperture extending through the heat shield. The support lock may have a tab extending radially outward from a distal surface of the support lock. The aperture in the heat shield may be configured to retain the tab of the support lock.
Abstract:
An example diffuser assembly includes a diffuser case, an annular ring, and a retaining tab that is mounted to the annular ring and has an end that engages an inner wall of the diffuser case. The engagement between the second end and the inner wall locks the retaining tab and limits movement of the annular ring along a central longitudinal axis of the diffuser case. Another example diffuser assembly includes a diffuser case, an annular ring, and a snap ring. The snap ring is situated in an annular groove of an inner wall of the diffuser case, and restricts movement of the annular ring along a central longitudinal axis of the diffuser case. A retaining tab is affixed to either the annular ring or the diffuser case, and has an end retaining the annular ring in the annular groove.
Abstract:
A compliant seal assembly that may be for an MTF of a gas turbine engine includes a housing orientated about an axis with a circumferentially extending groove in the housing opened radially outward. An annular carrier of the assembly is constructed and arranged to move radially within the groove, and includes a circumferentially extending channel that is opened radially outward for receipt of a piston ring that may seal to a surrounding cylindrical wall. In operation, the carrier moves radially with respect to the housing to compensate for radial displacement between the housing and the wall, and the piston ring moves axially along the wall to compensate for axial displacement between the housing and the wall.
Abstract:
Aspects of the disclosure are directed to a tube of an engine of an aircraft configured to transfer a fluid, a boss of the engine, and a shim coupled to at least one of the tube and the boss that is configured to maintain a gap between the tube and the boss when the engine is assembled.
Abstract:
A mid-turbine frame for a gas turbine engine includes an inner frame case. A bearing support member is located adjacent the inner frame case. At least one spoke is attached to the inner frame case. A passage extends through at least one spoke, the inner frame case, and the bearing support member.
Abstract:
A mid-turbine frame for a gas turbine engine includes an inner frame case defining a sealed torque box cavity. Multiple spokes protrude radially outward from the inner frame case, and at least one service line is connected to the inner frame case.
Abstract:
Aspects of the disclosure are directed to a tube of an engine of an aircraft configured to transfer a fluid, a boss of the engine, and a shim coupled to at least one of the tube and the boss that is configured to maintain a gap between the tube and the boss when the engine is assembled.