Abstract:
A part comprising a one or more removable wear indicators is provided. The part may be a stator segment comprising a plurality of airfoils. The stator segment may also comprise one or more mock airfoils at each end of the stator segment. Each of the mock airfoils may comprise an indicator configured to wear during a polishing process.
Abstract:
An upper shield and a lower shield may be coupled to a rotor for polishing airfoils of the rotor in a vibratory bowl. The upper shield and the lower shield may include spars. The spars may correspond to leading edges and trailing edges of the airfoils. A media including abrasive particles may be flowed through the rotor in the vibratory bowl. The spars may protect the leading edges and trailing edges of the airfoils from excessive material removal by the abrasive particles.
Abstract:
A sleeve may be configured to secure an airfoil cluster for polishing. The sleeve may include a mock airfoil and a bypass flow path between the mock airfoil and an end wall of the sleeve. The sleeve may be positioned in an annular ring of sleeves in a polishing apparatus. The polishing apparatus may comprise an annular flow path for an abrasive fluid. The abrasive fluid may be flowed through the annular ring of sleeves in order to polish the airfoil cluster.
Abstract:
A system, fixture and method for media finishing a cluster of airfoils are provided. The fixture may include a base having a first end and a second end, a receptacle disposed on the base and configured to receive the stator cluster, and at least one mock airfoil disposed at each of the first and second ends of the base in alignment with the airfoils of the cluster.
Abstract:
A method of removing material from an airfoil includes engaging a root of the airfoil within a root-securing fixture, engaging a tip of the airfoil within a tip-securing fixture, and removing material from the airfoil. The method further includes disengaging the tip of the airfoil from the tip-securing fixture to allow movement of the tip from a clamped state position to a free-state position. The method further includes reengaging the tip of the airfoil within the tip-securing fixture in the free-state position, and removing additional material from the airfoil.
Abstract:
A part comprising a one or more removable wear indicators is provided. The part may be a stator segment comprising a plurality of airfoils. The stator segment may also comprise one or more mock airfoils at each end of the stator segment. Each of the mock airfoils may comprise an indicator configured to wear during a polishing process.
Abstract:
A tool comprising a plurality of wear indicators is provided. The tool may be made from a rapid prototyping process. The tool may be used in an abrasive processing operation. The tool may comprise one or more control elements, (e.g., control geometries, part interfaces, fixture interfaces and/or the like). These control elements may comprise indicators of tool wear. The indicators may be inspected physically (e.g., by touch) and/or visually.
Abstract:
A method of removing material from an airfoil includes engaging a root of the airfoil within a root-securing fixture, engaging a tip of the airfoil within a tip-securing fixture, and removing material from the airfoil. The method further includes disengaging the tip of the airfoil from the tip-securing fixture to allow movement of the tip from a clamped state position to a free-state position. The method further includes reengaging the tip of the airfoil within the tip-securing fixture in the free-state position, and removing additional material from the airfoil.
Abstract:
A part comprising a one or more removable wear indicators is provided. The part may be a stator segment comprising a plurality of airfoils. The stator segment may also comprise one or more mock airfoils at each end of the stator segment. Each of the mock airfoils may comprise an indicator configured to wear during a polishing process.
Abstract:
A tool comprising a plurality of wear indicators is provided. The tool may be made from a rapid prototyping process. The tool may be used in an abrasive processing operation. The tool may comprise one or more control elements, (e.g., control geometries, part interfaces, fixture interfaces and/or the like). These control elements may comprise indicators of tool wear. The indicators may be inspected physically (e.g., by touch) and/or visually.