Abstract:
A system includes, in one example, a shroud configured to circumscribe a plurality of rotor blades of a gas rotor engine, and at least one rub button including a head portion having a height configured to extend into a flow path region of the shroud along a central axis of the rub button that extends radially into the flow path region. The head portion includes a profile, orthogonal to the central axis, that varies according to a defined function of the height of the head portion.
Abstract:
A composite ceramic turbine blade includes a ceramic airfoil portion and a ceramic outer tip shroud portion. The ceramic outer tip shroud portion is joined to the ceramic airfoil portion by a bonding means. In an embodiment, the bonding means comprises partial transient liquid phase bonding. In another embodiment, the airfoil portion is a fiber reinforced ceramic.
Abstract:
An airfoil includes a core having a first surface, a skin having a second surface disposed over at least a portion of the first surface of the core, and at least one of a transient liquid phase (TLP) bond and a partial transient liquid phase (PTLP) bond. The bond(s) are disposed between the first surface and the second surface, joining the skin to the core.
Abstract:
A gas turbine engine component assembly includes a ceramic component having a first thermal characteristic. A metallic component has a second thermal characteristic. A bonding material secures the ceramic component to the metallic component. The bonding material includes at least one of a transient liquid phase bond and a partial transient liquid phase bond. The bonding material is configured to withstand a shear stress parameter relating to a differential between the first and second thermal characteristics.
Abstract:
An airfoil component includes a first segment that has a first piece of a mount and a first piece of an airfoil. The first segment is formed of a first ceramic-based material. A second segment includes a second piece of the mount and a second piece of the airfoil. The second segment is formed of a second ceramic-based material. The first and second segments are bonded together along a bond joint such that the first and second pieces of the mount are bonded to each other and the first and second pieces of the airfoil are bonded to each other.
Abstract:
A blade for a gas turbine engine includes composite layers that include a uni-directional layer and a fabric compliant wedge layer that are arranged adjacent to the uni-directional layer. The fabric compliant wedge layer has a reduced compressive Young's modulus compared to the uni-directional layer.
Abstract:
An airfoil component includes a first segment that has a first piece of a mount and a first piece of an airfoil. The first segment is formed of a first ceramic-based material. A second segment includes a second piece of the mount and a second piece of the airfoil. The second segment is formed of a second ceramic-based material. The first and second segments are bonded together along a bond joint such that the first and second pieces of the mount are bonded to each other and the first and second pieces of the airfoil are bonded to each other.
Abstract:
A gas turbine engine component assembly includes a ceramic component having a first thermal characteristic. A metallic component has a second thermal characteristic. A bonding material secures the ceramic component to the metallic component. The bonding material includes at least one of a transient liquid phase bond and a partial transient liquid phase bond. The bonding material is configured to withstand a shear stress parameter relating to a differential between the first and second thermal characteristics.
Abstract:
A system includes, in one example, a shroud configured to circumscribe a plurality of rotor blades of a gas rotor engine, and at least one rub button including a head portion having a height configured to extend into a flow path region of the shroud along a central axis of the rub button that extends radially into the flow path region. The head portion includes a profile, orthogonal to the central axis, that varies according to a defined function of the height of the head portion.
Abstract:
A process for manufacturing a ceramic matrix composite component, said process comprising inserting at least one fibrous sheet into a resin transfer molding system. The process includes wetting the at least one fibrous sheet with a pre-ceramic polymer resin. The process includes applying a pressure to the at least one fibrous sheet and pre-ceramic polymer resin with an intensifier responsive to thermal expansion and curing the pre-ceramic polymer resin.