Abstract:
A mode control (25) controls a helicopter flight control system (21) between a heading hold mode and a turn coordination mode according to switching patterns resembling the natural response of an expert pilot to flight conditions. Helicopter operating parameters (31, 30) are detected (31, 29) and each parameter's detected value is converted from a crisp value to a fuzzy input (100). A new mode fuzzy output is provided by applying a compositional rule of inference (105) across each fuzzy input and a composite mode selection rule base (110). The new mode fuzzy output is converted into a crisp value (112) which is used to determine whether the flight control system operates in the heading hold mode or the turn coordination mode.
Abstract:
A rotary wing aircraft flight control system (21) which receives signals indicative of aircraft pitch rate (88), pitch attitude (86), bank angle (87) and airspeed (66), and responds to a pitch command from a sidearm controller (29) to control the pitch of an aircraft comprises means for scheduling and providing a set point signal indicative of the desired aircraft pitch rate of change, means for computing the difference between the said point and the pitch rate signal, and for providing a pitch rate error signal indicative thereof, inverse model means (56) responsive to said set point signal for scheduling a feedforward command signal to drive the aircraft to respond in a manner which is essentially equal to said set point signal, means for providing maneuvering feel on the sidearm controller (29) when the bank angle of the aircraft exceeds a predetermined value by conditioning said set point signal, means for integrating over time said conditioned set point signal to provide a desired pitch attitude set point, for comparing said pitch attitude set point and the pitch attitude signal (86) and providing a pitch attitude error signal indicative of the difference, and means responsive to said pitch rate error signal, said feedforward command signal, and said pitch attitude error signal, for providing a pitch command signal to the main rotor of the aircraft.
Abstract:
An aircraft flight control system including model following control laws includes improved logic and algorithms to limit the error between a desired parameter value from the output of a model and an actual parameter value. Such logic is operable to sense the amount of said parameter error and to limit the amount of the error if it exceeds a predetermined value. The difference between the predetermined limit and the actual error is fed back to the model such that the output of the model is adjusted so that the error between the desired and actual parameter values does not exceed the predetermined value.
Abstract:
A helicopter flight control system includes an automatic turn coordination system which provides a coordinating yaw command signal to the tail rotor of the helicopter. The system stores on command a trim attitude (e.g., signals indicative of bank angle, lateral ground speed, and lateral acceleration) about which automatic turn coordination is provided, thus providing the pilot with automatic turn coordination about attitudes other than wings level.
Abstract:
A helicopter flight control system includes a model following control system architecture which automatically provides a coordinating yaw command signal to the helicopter tail rotor to coordinate helicopter flight during a banked turn. The control system processes information from a variety of helicopter sensors in order to provide the coordinating yaw command signal on an output line to the tail rotor of the helicopter.
Abstract:
A control system, having an input command signal and driving a prime mover, is provided with variable magnitude and/or rate input signal limiting that is adjusted by maps (68, 70, 72, 74) which set the limits for a variable magnitude limiter (14) and a variable rate limiter (22) as a function of the prime mover rate. The limiting is adjusted dynamically as the prime mover rate changes. When the prime mover enters an undesirable operating condition, the maps only limit the command signal in the direction of such condition. The adjustable limiting is enabled or disabled based on the position, rate, and/or acceleration of the prime mover.
Abstract:
A mode control (25) controls a helicopter flight control system (21) between a heading hold mode and a turn coordination mode according to switching patterns resembling the natural response of an expert pilot to flight conditions. Helicopter operating parameters (31, 30) are detected (31, 29) and each parameter's detected value is converted from a crisp value to a fuzzy input (100). A new mode fuzzy output is provided by applying a compositional rule of inference (105) across each fuzzy input and a composite mode selection rule base (110). The new mode fuzzy output is converted into a crisp value (112) which is used to determine whether the flight control system operates in the heading hold mode or the turn coordination mode.
Abstract:
Système de commande de vol pour hélicoptère comportant un système de coordination automatique de virage qui fournit un signal coordinateur de commande de lacet au rotor arrère de l'hélicoptère. Sur commande, le système met en mémoire une assiette (par ex., signaux indicateurs de l'angle d'inclinaison latérale, vitesse au sol latérale et accélération latérale) qui permet de fournir une coordination automatique de virage, donnant ainsi au pilote une coordination automatique de virage sur des assiettes autre que celle où l'aéronefs reste horizontal.
Abstract:
Un système de commande de vol d'un aérodyne incluant des lois de commande suivant un modèle comprend une logique et des algorithmes améliorés afin de limiter l'erreur entre une valeur paramétrique désirée provenant de la sortie d'un modèle et une valeur paramétrique réelle. Une telle logique peut fonctionner pour détecter la quantité de ladite erreur paramétrique et limiter la quantité de l'erreur si elle dépasse une valeur prédéterminée. La différence entre la limite prédéterminée et l'erreur réelle est renvoyée au modèle de sorte que la sortie du modèle est ajustée pour que l'erreur entre les valeurs paramétriques désirée et réelle ne dépasse pas la valeur prédéterminée.
Abstract:
Cette invention concerne un système de commande comprenant un signal de commande d'entrée et entraînant un appareil moteur, pourvu d'un dispositif de limitation variable des signaux d'entrée en ampleur et/ou en allure, qui est réglé par des diagrammes (68, 70, 72, 74) qui fixent les limites pour un limiteur variable d'ampleur (14) et un limiteur variable d'allure (22), en fonction du régime de l'appareil moteur. La limitation se règle de manière dynamique à mesure que le régime de l'appareil moteur varie. Lorsque l'appareil moteur entre dans un état de fonctionnement indésirable, les diagrammes ne limitent le signal de commande que dans le sens de cet état. La limitation réglable est validée ou invalidée en fonction de la position, du régime, et/ou de l'accélération de l'appareil moteur.