Abstract:
A method of forming a hybrid component having an axis of rotation includes forming a first substrate having a first average grain size, forming a second substrate having a second average grain size different from the first average grain size, positioning an interlayer on one of the first and second substrates, positioning a portion of the first substrate adjacent a portion of the second substrate such that the interlayer extends between the portion of the first substrate and the portion of the second substrate, heating the first and second substrates and the interlayer at a temperature below the melting points of the first and second substrates to melt the interlayer, and isothermally solidifying the interlayer to form a solid-state joint between the portions of the first and second substrates.
Abstract:
A device and method for locally heat treating at least one airfoil in an integrally bladed rotor device. A pair of IR heat sources are positioned to direct IR heat rays in the direction where local heat treatment is required. A pair of parabolic mirrors are positioned to direct the IR heat rays on to the metal component. The heat treating is useful after welding the airfoil on to the rotor device.
Abstract:
A laser cladding head comprises a protective housing, a focal array, a turning mirror, and a powder nozzle. The housing extends along a primary axis from a proximal end to a distal end. The focal array is situated at the proximal end and oriented to receive and focus collimated light in a beam directed substantially along the primary axis. The turning mirror is situated at the distal end and disposed to redirect the beam in an emission direction, towards a target point separated from the turning mirror by a working distance of at most a tenth the focal length. The turning mirror is a nonfocal reflective surface indexable to alter an impingement location of the beam on the turning mirror. The powder nozzle is situated at the distal end and receives and directs weld material towards the target point for melting.
Abstract:
The present disclosure relates generally to a system and method for applying a metallic coating. A first metallic coating may be applied to a portion of a total surface of a part and a second metallic coating may be applied to substantially the total surface. The metallic coating may be applied to a vane cluster for use in a turbomachine.
Abstract:
A laser cladding system comprises a cladding head and a gas system. The cladding head extends along a primary axis, and comprises a mirror and a powder nozzle both situated at a distal end of the head. The powder nozzle directs weld material at a target point, and the mirror directs a beam of collimated light at the target point. The gas system comprises a high-speed gas nozzle and a gas knife. The high-speed gas nozzle produces a gas sheath coaxial with the beam in a region between the mirror and target point, shielding the mirror from debris and backspatter. The gas knife redirects the gas sheath away from the target point and redirects debris and molten backspatter away from an interior of the laser cladding head.
Abstract:
A laser cladding head comprises a protective housing, a focal array, a turning mirror, and a powder nozzle. The housing extends along a primary axis from a proximal end to a distal end. The focal array is situated at the proximal end and oriented to receive and focus collimated light in a beam directed substantially along the primary axis. The turning mirror is situated at the distal end and disposed to redirect the beam in an emission direction, towards a target point separated from the turning mirror by a working distance of at most a tenth the focal length. The turning mirror is a nonfocal reflective surface indexable to alter an impingement location of the beam on the turning mirror. The powder nozzle is situated at the distal end and receives and directs weld material towards the target point for melting.
Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
Abstract:
A process of welding fittings to ends of a double wall pipe comprising forming a first welded joint between an inner pipe and an inner receiver of a first fitting; forming a second welded joint between an outer pipe and an outer receiver of the first fitting; forming a third welded joint between the outer pipe and an outer receiver of a second fitting; and forming a fourth welded joint between the inner pipe and an inner receiver of the second fitting.
Abstract:
A method of reworking or repairing a component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity that results in a through hole; sealing the through hole with a backing; and at least partially filling the cavity with a multiple of layers of a multiple of laser powder deposition spots, each of the multiple of laser powder deposition spots formed of a filler alloy, a first layer of the multiple of layers includes a perimeter of the multiple of laser powder deposition spots that overlap a wall of the cavity and the backing.
Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.