Abstract:
A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.
Abstract:
Metal-plated polymeric components and other materials having improved propertiessuch as increased interfacial bond strengths, increased durability, increased heat resistance, and improved wear and erosion resistance are described. Methods for fabricating such metal-plated polymeric components and other materials are also described.
Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet, a first diffusing section extending downstream from the metering section, and a second diffusing section extending downstream from the first diffusing section to the outlet. The second diffusing section includes first and second lobes, each lobe diverging longitudinally and laterally relative to the metering section, and a trailing edge.
Abstract:
A cooling channel array for a gas turbine engine is provided. The cooling channel array is carried by a component wall having an inner surface and an outer surface and comprises at least two metering portions that communicate with a diffusion cavity.
Abstract:
A cooling channel array carried by a component wall of a gas turbine engine is provided. The cooling channel array comprises a diffusion cavity and a metering section. The metering section comprises a main hole and two or more side holes. The side holes may be separate from the main hole or may branch off of the main hole. The diffusion cavity may incorporate a lobed configuration to help diffuse cooling fluid as it exits the cooling channel array.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.