Abstract:
An implantable biomaterial scaffold having islet cells or small islet cell clusters attached thereto in a multilayer. The cells are derived by enzymatic dispersion and/or calcium depletion of large adult intact islets.
Abstract:
A tissue engineering scaffold for growing cells can include a plurality of biocompatible microspheres linked together to form a three-dimensional matrix. The matrix can include a plurality of pores for growing cells. The biocompatible microspheres can include first and second sets of microspheres. The first set of microspheres can have a first characteristic, and a first predetermined spatial distribution with respect to the three-dimensional matrix. The second set of microspheres can have a second characteristic that is different from the first characteristic, and a second predetermined spatial distribution that is different from the first predetermined spatial distribution with respect to the three - dimensional matrix. The first and second characteristics can selected a composition, polymer, particle size, particle size distribution, type of bioactive agent, type of bioactive agent combination, bioactive agent concentration, amount of bioactive agent, rate of bioactive agent release, mechanical strength, flexibility, rigidity, color, radiotranslucency, radiopaqueness, or the like.
Abstract:
Compositions and methods for making a composition comprising a polymer and one or more chelators covalently coupled to polymer, wherein the one or more chelators has a benzene ring with more than one hydroxyl group at any position that is free, or a derivative of the chelator, or a salt of the chelator and methods of use.
Abstract:
The invention is directed to polymers that self-crosslink at acidic pH or can be crosslinked by phenolic agents in brine. Such polymers have lower viscosity and can be pumped deep into reservoirs, where they will cross link in situ, thus increasing their viscosity and/or form a gel and blocking thief zones. Methods of making and using such polymers are also provided.
Abstract:
A scaffold having islet cells or small islet cell clusters attached thereto in a multilayer, and a micro-mold having divots for culturing islets, wherein islet formation is influenced by the shape and dimensions of the divots are disclosed.
Abstract:
Bifunctional conjugate compositions are provided comprising a Signal- 1 moiety bound to a first polymer carrier, wherein the combined size of the Signal- 1 moiety and the first polymer carrier is about 1 nanometer to about 500 nanometers; and a Signal-2 moiety bound to a second polymer carrier, wherein the combined size of the Signal-2 moiety and the second polymer carrier is about 1 nanometer to about 500 nanometers. In some embodiments, the Signal- 1 moiety and the Signal-2 moiety are bound to the same polymer carrier. Associated methods are also provided.
Abstract:
A tissue engineering scaffold for growing cells can include a plurality of biocompatible microspheres linked together to form a three-dimensional matrix. The matrix can include a plurality of pores for growing cells. The biocompatible microspheres can include first and second sets of microspheres. The first set of microspheres can have a first characteristic, and a first predetermined spatial distribution with respect to the three-dimensional matrix. The second set of microspheres can have a second characteristic that is different from the first characteristic, and a second predetermined spatial distribution that is different from the first predetermined spatial distribution with respect to the three - dimensional matrix. The first and second characteristics can selected a composition, polymer, particle size, particle size distribution, type of bioactive agent, type of bioactive agent combination, bioactive agent concentration, amount of bioactive agent, rate of bioactive agent release, mechanical strength, flexibility, rigidity, color, radiotranslucency, radiopaqueness, or the like.
Abstract:
The instant application relates to nanogels or compositions that hold multivalent metal ions until some level of nanogel degradation has occurred, then slowly release the multivalent metal ions for gelation with carboxylate containing polymers. Compositions comprising such nanogels, together with polymers that can be crosslinked with multivalent metal ions, allow the deployment of such mixtures in various applications, and greatly increased gelation times.
Abstract:
The invention is directed to stable and labile crosslinked water swellable polymeric microparticles that can be further gelled, methods for making same, and their various uses in the hygiene and medical arts, gel electrophoresis, packaging, agriculture, the cable industry, information technology, in the food industry, papermaking, use as flocculation aids, and the like. More particularly, the invention relates to a composition comprising expandable polymeric microparticles having labile crosslinkers and stable crosslinkers, said microparticle mixed with a fluid and an unreacted tertiary crosslinker comprising PEI or other polyamine based tertiary crosslinker that is capable of further crosslinking the microparticle on degradation of the labile crosslinker and swelling of the particle, so as to form a stable gel. A particularly important use is as an injection fluid in petroleum production, where the expandable polymeric microparticles are injected into a well and when the heat and/or pH of the well cause degradation of the labile crosslinker and when the microparticle expands, the tertiary crosslinker crosslinks the polymer to form a stable gel, thus diverting water to lower permeability regions and improving oil recovery.