Abstract:
A multicolor optical image-generating device comprised of an array of grating light valves (GLVs) organized to form light-modulating pixel units for spatially modulating incident rays of light. The pixel units are comprised of three subpixel components each including a plurality of elongated, equally spaced apart reflective grating elements arranged parallel to each other with their light-reflective surfaces also parallel to each other. Each subpixel component includes means for supporting the grating elements in relation to one another, and means for moving alternate elements relative to the other elements and between a first configuration wherein the component acts to reflect incident rays of light as a plane mirror, and a second configuration wherein the component diffracts the incident rays of light as they are reflected from the grating elements. The three subpixel components of each pixel unit are designed such that when red, green and blue light sources are trained on the array, colored light diffracted by particular subpixel components operating in the second configuration will be directed through a viewing aperture, and light simply reflected from particular subpixel components operating in the first configuration will not be directed through the viewing aperture.
Abstract:
A modulator (10) for modulating incident rays of light, the modulator having several equally spaced beam elements (18), each having a light reflective planar surface. The beam elements are arranged and supported (12) parallel to each other, with their reflective surfaces parallel. During operation, the elements remain parallel, but the modulator moves the beams so that the perpendicular spacing of their reflective surfaces changes between two configurations. In both configurations, the spacing equals m/4 times the wavelength of incident light. In the first configuration, m equals an even whole number or zero, and the modulator acts to reflect the incident rays of light as a plane mirror. In the second configuration, m equals an odd number and the modulator diffracts the incident rays as they are reflected.
Abstract:
A modulator for modulating incident rays of light, the modulator having a plurality of equally spaced apart elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting elements in relation to one another and means for moving particular ones of the elements relative to others so that the moved elements transit between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the light reflected therefrom. In operation, the light reflective surfaces of the elements remain parallel to each other in both the first and the second configurations. The perpendicular spacing between the reflective surfaces of respective elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the elements are in the first configuration and m=an odd whole number when the elements are in the second configuration.
Abstract:
A modulator for modulating incident rays of light, the modulator having a plurality of equally spaced apart elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting elements in relation to one another and means for moving particular ones of the elements relative to others so that the moved elements transit between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the light reflected therefrom. In operation, the light reflective surfaces of the elements remain parallel to each other in both the first and the second configurations. The perpendicular spacing between the reflective surfaces of respective elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the elements are in the first configuration and m=an odd whole number when the elements are in the second configuration.
Abstract:
A modulator for modulating incident rays of light, the modulator comprising a plurality of equally spaced apart beam elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting the beam elements in relation to one another and means for moving the beam elements relative to one another so that the beams move between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the incident rays of light as they are reflected therefrom. In operation, the light reflective surfaces of the beam elements remain parallel to each other in both the first and the second configurations and the perpendicular spacing between the reflective surfaces of adjacent beam elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the beam elements are in the first configuration and m=an odd number when the beam elements are in the second configuration.
Abstract:
A multicolor optical image-generating device comprised of an array of grating light valves (GLVs) organized to form light-modulating pixel units for spatially modulating incident rays of light. The pixel units are comprised of three subpixel components each including a plurality of elongated, equally spaced apart reflective grating elements arranged parallel to each other with their light-reflective surfaces also parallel to each other. Each subpixel component includes means for supporting the grating elements in relation to one another, and means for moving alternate elements relative to the other elements and between a first configuration wherein the component acts to reflect incident rays of light as a plane mirror, and a second configuration wherein the component diffracts the incident rays of light as they are reflected from the grating elements. The three subpixel components of each pixel unit are designed such that when red, green and blue light sources are trained on the array, colored light diffracted by particular subpixel components operating in the second configuration will be directed through a viewing aperture, and light simply reflected from particular subpixel components operating in the first configuration will not be directed through the viewing aperture.
Abstract:
The invention provides microfabricated devices and methods for directing the growth of a cell process to form an artificial synapse. The devices are called artificial synapse chips. The artificial synapse comprises a nanofabricated aperture (about 50-100 nm in size) that connects the cell process to a chemical or electrical means of neuronal excitation. Such an aperture width mimics the length scales of a natural synapse and thus emphasizes the localized spatial relationship between a neuron and a stimulation source. The invention further provides devices and methods for regenerating a nerve fiber into an electrode. The invention thus provides a regeneration electrode that uses a novel neural interface for stimulation and that uses novel surface methods for directing neuronal growth making possible in vivo connection of the devices to neural circuitry in a retina and other anatomical locations.
Abstract:
A modulator for modulating incident rays of light, the modulator comprising a plurality of equally spaced apart beam elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting the beam elements in relation to one another and means for moving the beam elements relative to one another so that the beams move between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the incident rays of light as they are reflected therefrom. In operation, the light reflective surfaces of the beam elements remain parallel to each other in both the first and the second configurations and the perpendicular spacing between the reflective surfaces of adjacent beam elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the beam elements are in the first configuration and m=an odd number when the beam elements are in the second configuration.
Abstract:
A modulator for modulating incident rays of light, the modulator having a plurality of equally spaced apart elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting elements in relation to one another and means for moving particular ones of the elements relative to others so that the moved elements transit between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the light reflected therefrom. In operation, the light reflective surfaces of the elements remain parallel to each other in both the first and the second configurations. The perpendicular spacing between the reflective surfaces of respective elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the elements are in the first configuration and m=an odd whole number when the elements are in the second configuration.
Abstract:
A modulator for modulating incident rays of light, the modulator comprising a plurality of equally spaced apart beam elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting the beam elements in relation to one another and means for moving the beam elements relative to one another so that the beams move between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the incident rays of light as they are reflected therefrom. In operation, the light reflective surfaces of the beam elements remain parallel to each other in both the first and the second configurations and the perpendicular spacing between the reflective surfaces of adjacent beam elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the beam elements are in the first configuration and m=an odd number when the beam elements are in the second configuration.