Abstract:
The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro-and nano-templates of tailored shapes throuhg the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use, of chemical reactions.
Abstract:
A method for manufacturing oriented arrays of ceramic or metal oxide nanostructures, such as titania (TiO2) nanofibers. The nanofibers are formed on the surface of a body that is first sintered at a temperature in the range of about 1,100 to about 1,400 degrees Celsius. Subsequently, the surface is exposed to an H2-bearing gas, such as H2 and N2 in a ratio of about 5:95 at about 700 degrees Celsius for about 8 hours. During heat treatment in the gas phase reaction, sintered titania grains transform into arrays of nanofibers oriented in the same crystallographic direction.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
Abstract:
A method for manufacturing oriented arrays of ceramic or metal oxide nanostructures, such as titania (TiO 2 ) nanofibers. The nanofibers are formed on the surface of a body that is first sintered at a temperature in the range of about 1,100 to about 1,400 degrees Celsius. Subsequently, the surface is exposed to an H 2 -bearing gas, such as H 2 and N 2 in a ratio of about 5:95 at about 700 degrees Celsius for about 8 hours. During heat treatment in the gas phase reaction, sintered titania grains transform into arrays of nanofibers oriented in the same crystallographic direction.
Abstract:
The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
Abstract:
A method for manufacturing oriented arrays of ceramic or metal oxide nanostructures, such as titania (TiO 2 ) nanofibers. The nanofibers are formed on the surface of a body that is first sintered at a temperature in the range of about 1,100 to about 1,400 degrees Celsius. Subsequently, the surface is exposed to an H 2 -bearing gas, such as H 2 and N 2 in a ratio of about 5:95 at about 700 degrees Celsius for about 8 hours. During heat treatment in the gas phase reaction, sintered titania grains transform into arrays of nanofibers oriented in the same crystallographic direction.
Abstract:
The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro- and nano-templates of tailored shapes through the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use of chemical reactions.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).