Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.
Abstract:
Disclosed are medical devices comprising one or more surfaces, one or more SAM molecules attached to the one or more surfaces of the medical device, and one or more therapeutic agents attached to the one or more self-assembled monolayer molecules. Also disclosed are medical devices comprising one or more surfaces, one or more self-assembled monolayer molecules attached to the one or more surfaces of the medical device, one or more linkers comprising a first functional group and a second functional group, the first functional group attached to the self-assembled monolayer molecule and a therapeutic agent attached to the second functional group. The therapeutic agent may be attached to the SAM molecule via a linker. The present invention also concerns methods of administering a therapeutic agent to a subject, comprising contacting the subject with one of the medical devices set forth herein.
Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.
Abstract:
Se describen varios sistemas y técnicas que pueden utilizarse para mejorar las cargas de detección sobre una superficie de techo. En algunas modalidades, un sistema sensor de techo montado a una superficie resistente a impacto puede incluir un sensor, una cubierta protectora, y un mecanismo de transferencia de carga. El sensor puede adaptarse para detectar una carga incidente sobre el mismo, y la cubierta protectora puede estar configurada para abarcar al menos el ancho del sensor y adaptada para soportar impactos de medios densos y una carga incidente directa. El mecanismo de transferencia de carga puede adaptarse para transferir mecánicamente una carga aplicada sobre la cubierta protectora al sensor.
Abstract:
Various systems and techniques may be used to enhance the sensing loads on a roof surface. In some implementations, an impact-resistant surface-mounted roof sensor system may include a sensor, a protective cover, and a load transfer mechanism. The sensor may be adapted to sense a load incident thereon, and the protective cover may be configured to span at least the width of the sensor and adapted to withstand impacts from dense media and an direct incident load. The load transfer mechanism may be adapted to mechanically transfer a load applied on the protective cover to the sensor.
Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.
Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.
Abstract:
Various systems and techniques may be used to enhance the sensing loads on a roof surface. In some implementations, an impact-resistant surface-mounted roof sensor system may include a sensor, a protective cover, and a load transfer mechanism. The sensor may be adapted to sense a load incident thereon, and the protective cover may be configured to span at least the width of the sensor and adapted to withstand impacts from dense media and an direct incident load. The load transfer mechanism may be adapted to mechanically transfer a load applied on the protective cover to the sensor.
Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.