Abstract:
Devices, materials, compounds, systems, and processes for Cherenkov-Activated Nuclear-Targeted Photodynamic Therapy that involves generating Cherenkov light within the tissue of a target volume and using this light to activate photosensitizing material that is located in the nucleus of cells of the target volume.
Abstract:
Various embodiments of methods and systems are described herein for the acquisition and quantification of fluorescence or luminescence signals from a region of interest of an object. The quantification of the acquired signals includes performing at least one ratiometric operation to correct these signals for artifacts due to various factors.
Abstract:
There is provided herein a nanovesicle having a bilayer comprising a saturated first phospholipid and no more than about 15 molar % of a second phospholipid covalently conjugated to a J-aggregate forming dye.
Abstract:
The biopsy device generally comprises: a cannula body having a longitudinal axis and a probing region extending along the longitudinal axis, the probing region having a sample receiving window defined therein for receiving a sample of a surrounding tissue when performing a biopsy; and a plurality of optical fibers mounted along an exterior portion of the cannula body, each of the plurality of optical fibers having a fiber end in the probing region of the cannula body, at least one of the plurality of optical fibers being adapted to illuminate the surrounding tissue with an optical signal generated by the at least one light generator and at least one of the plurality of optical fibers being adapted to detect an optical signal response with the at least one light detector, the optical signal response being caused by the propagation of the optical signal in the surrounding tissue.
Abstract:
The biopsy device generally comprises: a cannula body having a longitudinal axis and a probing region extending along the longitudinal axis, the probing region having a sample receiving window defined therein for receiving a sample of a surrounding tissue when performing a biopsy; and a plurality of optical fibers mounted along an exterior portion of the cannula body, each of the plurality of optical fibers having a fiber end in the probing region of the cannula body, at least one of the plurality of optical fibers being adapted to illuminate the surrounding tissue with an optical signal generated by the at least one light generator and at least one of the plurality of optical fibers being adapted to detect an optical signal response with the at least one light detector, the optical signal response being caused by the propagation of the optical signal in the surrounding tissue.
Abstract:
There is provided herein a nanovesicle having a bilayer comprising a saturated first phospholipid and no more than about 15 molar % of a second phospholipid covalently conjugated to a J-aggregate forming dye.