Abstract:
Discussed herein are systems and methods for fabrication of flexible electronic structures via direct growth of two-dimensional materials on metal foil and the direct growth of 2D materials on any substrate including polycrystalline, single crystal, and amorphous substrates, that may employ an adhesion layer of, for example, a Cu or Ni film, formed directly on the substrate prior to formation of subsequent layers.
Abstract:
Externally-strained devices such as LED and FET structures as discussed herein may have strain applied before or during their being coupled to a housing or packaging substrate. The packaging substrate may also be strained prior to receiving the structure. The strain on the devices enables modulation of light intensity, color, and electrical currents in some embodiments, and in alternate embodiments, enables a fixed strain to be induced and maintained in the structures.
Abstract:
A system for tracking an eye of a user includes one or more piezoelectric sensors positionable on the face of the user, and an eye tracking computer system in signal communication with the one or more piezoelectric sensors so as to receive signals from the one or more piezoelectric sensors, wherein the computer system is configured to detect movement in at least one direction of the eye of the user based on the signals received by the computer system from the one or more piezoelectric sensors when the one or more piezoelectric sensors are positioned on the face of the user in one or more locations each spaced from the eyelids of the user.
Abstract:
Systems and methods herein relate to the fabrication of a single-crystal flexible semiconductor template that may be attached to a semiconductor device. The template fabricated comprises a plurality of single crystals grown by lateral epitaxial growth on a seed layer and bonded to a flexible substrate. The layer grown has portions removed to create windows that add to the flexibility of the template.