Abstract:
A new class of antennas and microwave components are introduced. In this approach a high-permittivity dielectric film is applied (i.e. printed) on a dielectric substrate, which may be grounded. By changing the shape of the high-permittivity film, different microwave devices (e.g. waveguides, filters, couplers, and antennas) are produced. By changing the size and permittivity of the high-permittivity film and dielectric substrate, these elements are designed at different frequencies for different applications. Highly-efficient microwave devices can result due to the absence of surface currents.
Abstract:
Arrays of low permittivity Polymer-based Resonator Antenna elements with different configurations. Individual array elements can be fabricated with complicated geometries; these elements can be assembled into complicated patterns as a single monolithic fabricated structure using narrow wall connecting structures, which removes the requirement to position and assemble the array elements. Monolithic array structures can be assembled as sub-arrays in larger array structures. Elements, sub-arrays, and arrays can also be formed by inserting dielectric materials into cavities defining their lateral geometries, and fabricated in polymer templates. The polymer templates can be removed or retained to function as part of the antenna. Effective excitation is achieved by one of a number of coupling methods, including standing metal strip feeding on the vertical sides of the elements, feeding by tall metal transmission lines in contact or in close proximity to the vertical sides of the elements, modified microstrip feeding, or aperture feeding by using a slot in the metal plane underneath the elements. The wideband array feeds are realized by optimized transmission line distribution networks which include wideband matching sections.
Abstract:
Antennas suitable for use in compact radio frequency (RF) applications and devices, and methods of fabrication thereof. Described are resonator antennas, for example dielectric resonator antennas fabricated using polymer-based materials, such as those commonly used in lithographic fabrication of integrated circuits and microsystems. Accordingly, lithographic fabrication techniques can be employed in fabrication. The antennas have metal inclusions embedded in the resonator body which can be configured to control electromagnetic field patterns, which serves to enhance the effective permittivity of the resonator body, while creating an anisotropic material with different effective permittivity and polarizations in different orientations.
Abstract:
Arrays of low permittivity Polymer-based Resonator Antenna elements with different configurations. Individual array elements can be fabricated with complicated geometries; these elements can be assembled into complicated patterns as a single monolithic fabricated structure using narrow wall connecting structures, which removes the requirement to position and assemble the array elements. Monolithic array structures can be assembled as sub-arrays in larger array structures. Elements, sub-arrays, and arrays can also be formed by inserting dielectric materials into cavities defining their lateral geometries, and fabricated in polymer templates. The polymer templates can be removed or retained to function as part of the antenna. Effective excitation is achieved by one of a number of coupling methods, including standing metal strip feeding on the vertical sides of the elements, feeding by tall metal transmission lines in contact or in close proximity to the vertical sides of the elements, modified microstrip feeding, or aperture feeding by using a slot in the metal plane underneath the elements. The wideband array feeds are realized by optimized transmission line distribution networks which include wideband matching sections.
Abstract:
Antennas suitable for use in compact radio frequency (RF) applications and devices, and methods of fabrication thereof. Described are resonator antennas, for example dielectric resonator antennas fabricated using polymer-based materials, such as those commonly used in lithographic fabrication of integrated circuits and microsystems. Accordingly, lithographic fabrication techniques can be employed in fabrication. The antennas have metal inclusions embedded in the resonator body which can be configured to control electromagnetic field patterns, which serves to enhance the effective permittivity of the resonator body, while creating an anisotropic material with different effective permittivity and polarizations in different orientations.