Abstract:
An ultrasonic oscillator (46) drives a tool at a set frequency. An amplitude control runs the oscillator (46) to set the vibration level. A frequency regulator joins the amplitude and the oscillator (46). A control feedback loop (49), in the frequency regulator, keeps handpiece linear dynamics. An operational transconductance amplifier (52), in the oscillator (46), governs gain of the loop (49). A circuit (55) connects to the control to retard the rate of current application over time to the amplifier (52). The circuit (55) has switching to either retard the rate or reset for start up. The amplifier (54) is a current output device with current directly proportional to the bias current and input voltage with bias as gain change for the loop (49). The circuit (55) limits the bias to the amplifier (54) to modify frequency response and output current. A capacitor delays application of the bias to the amplifier (54). Replaceable tools of various lengths or shapes positioned along an axis vibrate for surgery at the frequency and a wave length. Tools longer than one wavelength and of configurations tuned to oscillate around the frequency resonate as a function of their material, length and configuration. A flue (17) surrounds the tool and has a hollow elongate semi rigid central body (28) about an axis with a funnel (29), at one end thereof and a nozzle (30), at the other to direct annular irrigant/coolant flow therethrough. The funnel (29) and nozzle (30) are resilient. Reinforcing ridges (32), inside the nozzle (30), act to maintain concentricity between the flue (17) and nozzle tip and channel irrigant thereabout.
Abstract:
An ultrasonic and electrosurgical handpiece (10) housing (11) has an axis, a distal end (12), a proximal end (13) and a passage (14) defined by an inside wall (40). A piezo stack (26) has elements (16) carried along a plane (17) generally transverse to the axis. A retainer (18) for the elements (16) has distal, intermediate and proximal portions (21). The distal portion (19) has a fastener (22); the proximal portion (21) has a threaded shoulder bolt (24). The stack (26) about the shoulder has an energy input (29) and a reference output (30) positioned axially apart from one another. An insulating sleeve (31) about the bolt is between central openings of the elements (16) and the bolt. A pair of insulators (32) about the bolt has the stack (26) therebetween; one insulator (32) is between the plane (17) and the stack (26) and the other is near the threads. The intermediate portion (20) attaches to the housing (11) at the plane (17) with decoupling and sealing. An irrigation channel (44) conveys fluid. The drive energy input (29), the feedback signal and the reference outputs (30) are insulated by the sleeve (31) and pair from the bolt. A washer (34) against the insulator (32) and about the threads applies axial but not torsion to the insulator (32) when a clamping nut (35) on the threads holds components on the bolt. The clamping nut (35) is in circuit with electrosurgical energy as the reference return for electrosurgery. A tool (36) fastens to a connector (37) for transmitting axial vibrations in the form of a predefined stroke at a tip (38) thereof.
Abstract:
An ultrasonic and electrosurgical handpiece (10) housing (11) has an axis, a distal end (12), a proximal end (13) and a passage (14) defined by an inside wall (40). A piezo stack (26) has elements (16) carried along a plane (17) generally transverse to the axis. A retainer (18) for the elements (16) has distal, intermediate and proximal portions (21). The distal portion (19) has a fastener (22); the proximal portion (21) has a threaded shoulder bolt (24). The stack (26) about the shoulder has an energy input (29) and a reference output (30) positioned axially apart from one another. An insulating sleeve (31) about the bolt is between central openings of the elements (16) and the bolt. A pair of insulators (32) about the bolt has the stack (26) therebetween; one insulator (32) is between the plane (17) and the stack (26) and the other is near the threads. The intermediate portion (20) attaches to the housing (11) at the plane (17) with decoupling and sealing. An irrigation channel (44) conveys fluid. The drive energy input (29), the feedback signal and the reference outputs (30) are insulated by the sleeve (31) and pair from the bolt. A washer (34) against the insulator (32) and about the threads applies axial but not torsion to the insulator (32) when a clamping nut (35) on the threads holds components on the bolt. The clamping nut (35) is in circuit with electrosurgical energy as the reference return for electrosurgery. A tool (36) fastens to a connector (37) for transmitting axial vibrations in the form of a predefined stroke at a tip (38) thereof.
Abstract:
An ultrasonic oscillator (46) drives a tool at a set frequency. An amplitude control runs the oscillator (46) to set the vibration level. A frequency regulator joins the amplitude and the oscillator (46). A control feedback loop (49), in the frequency regulator, keeps handpiece linear dynamics. An operational transconductance amplifier (52), in the oscillator (46), governs gain of the loop (49). A circuit (55) connects to the control to retard the rate of current application over time to the amplifier (52). The circuit (55) has switching to either retard the rate or reset for start up. The amplifier (54) is a current output device with current directly proportional to the bias current and input voltage with bias as gain change for the loop (49). The circuit (55) limits the bias to the amplifier (54) to modify frequency response and output current. A capacitor delays application of the bias to the amplifier (54). Replaceable tools of various lengths or shapes positioned along an axis vibrate for surgery at the frequency and a wave length. Tools longer than one wavelength and of configurations tuned to oscillate around the frequency resonate as a function of their material, length and configuration. A flue (17) surrounds the tool and has a hollow elongate semi rigid central body (28) about an axis with a funnel (29), at one end thereof and a nozzle (30), at the other to direct annular irrigant/coolant flow therethrough. The funnel (29) and nozzle (30) are resilient. Reinforcing ridges (32), inside the nozzle (30), act to maintain concentricity between the flue (17) and nozzle tip and channel irrigant thereabout.